Subscription of the second sec

A+ NAAG

Wardha Road, Nagpur - 441108 Accredited with NAAC A+

Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

-- - --

Department of Computer Science & Engineering

M. Tech. Computer Science & Engineering

Course Name: MCS21101: Advances in Algorithms

MCS21101	Course Outcomes
CO1	Analyze worst-case running times of algorithms using asymptotic analysis.
CO2	Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-conquer algorithms. Derive and solve recurrences describing the performance of divide-and-conquer algorithms.
CO3	Describe the greedy paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize greedy algorithms, and analyze them.
CO4	Analyze worst-case running times of algorithms using asymptotic analysis.
CO5	Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-conquer algorithms. Derive and solve recurrences describing the performance of divide-and-conquer algorithms.