

Department of Aeronautical Engineering

M. Tech. Aerospace Engineering (1st Semester)

Course Name: MAE21101: Aerodynamics

MAE21101	Course Outcomes
C01	Apply the knowledge of inviscid, incompressible fluid flow for solving real time fluid flow problems.
CO2	Apply the knowledge of incompressible fluid flow to solve complex engineering problems on finite wings.
CO3	Evaluate the importance of viscous fluid flows and arrive at the solution of relatedproblems.
CO 4	Analyze the application of numerical methods in aerodynamics and use panel methods to generate solutions.
C05	Understand the basics of experimental aerodynamics and apply the knowledge for project work.

Course Name: MAE21102: Aircraft Propulsion

MAE21102	Course Outcomes
C01	Apply the knowledge of aircraft propulsion methods and solve problems on basicsof propulsion.
CO2	Utilize the knowledge of turbine based engine for solving problems on aircraftpropulsion.
CO3	Implement the understanding of thermodynamic analysis of jet engines for solving the complex problems.
СО	Analyze the operating principle of ramjet and scramjet engines and solve related problems.
CO5	Solve the basic problems on rocket and electric propulsion.

Department of Aeronautical Engineering

Course Name: MAE21103: Aircraft Structure & Materials

MAE21103	Course Outcomes
CO1	Understand the properties of materials used in aeronautical applications
CO2	Utilize the knowledge of material types and manufacturing process involved inaircraft for solving related problems.
CO3	Implement the understanding of aircraft structure and solve complex problems.
CO4	Analyze the loads applied on aircraft and evaluate its effect on the structure.
CO5	Understand the basic certification requirements for aircraft structures.

Course Name: MAE21104: Aeronautical Engineering Lab-1

MAE21104	Course Outcomes
CO1	Perform various type flow visualization and evaluate aerodynamic properties of the structures.
CO2	Evaluate the aerodynamic forces and aerodynamic properties and show the pressure distribution over different aerodynamic bodies.
CO3	Estimate Performance Test on Single Cylinder, two stroke Petrol engine at different loads
CO4	Apply the unsymmetrical bending and deflection test on different cross-sections and loading conditions of beams.
CO5	Evaluate location of shear center for open and closed sections.
CO6	Estimate the constant strength and flexibility matrix of the beam.

Department of Aeronautical Engineering

Course Name: Program Elective-I (MAE21105 Boundary Layer theory)

MAE21105	Course Outcomes
CO1	Apply the concept of viscous flow to solve problems on boundary layer.
CO2	Solve the problems on thermal boundary layer using Reynolds analogy and Colburn analogy
CO3	Analyze flow transition from laminar to turbulent using Summerfield equation
CO4	Estimate turbulent boundary layer characteristics by various methods
C05	Investigate the causes of boundary layer separation and control strategies

Course Name: **Program Elective-I** (MAE21106 Theory of Fuel and Combustion)

MAE21106	Course Outcomes
C01	Calculate adiabatic flame temperature and estimate equilibrium products of combustion.
CO2	Solve chemical kinetics and species conservation equations
CO3	Acquire knowledge in different flame structures and stability characteristics
CO4	Compare the performance of different combustors and design of flame holders.
C05	Analyze the combustion mechanisms of different propellants.

Department of Aeronautical Engineering

Course Name: Program Elective-I (MAE21107 Aircraft Materials & NDT)

MAE21107	Course Outcomes
CO1	Describe the fundamental concepts of composite materials.
CO2	Analyze the composite materials by micro and macro mechanics analysis.
CO3	Understand the Micro-Mechanical Behavior of a Lamina of composites.
CO4	Examine the failure of composite by different methods and applications of compositematerials.
C05	Analyze the nondestructive testing of an aircraft structure components and its utilization.

Course Name: Program Elective-I (MAE21108 Finite Element Methods)

MAE21108	Course Outcomes
C01	Understand the plane stress & plane strain differential equation of equilibrium & compatibility equation, with boundary conditions
CO2	Analyze the Concept of discretization of body into elements and basic types of 2- D & 3-D elements, displacement models,
CO3	Analyze the various types of 2D elements applied to plane stress, plane strain and axis symmetric problems.
CO4	Solve complicated 2D & 3D Isoperimetric structural problems for stress analysis.
CO5	Determine formulation of mass matrix for one-dimensional bar element, free vibration analysis using one dimensional bar element.

Department of Aeronautical Engineering

Course Name: Program Elective-II (MAE21109 Experimental Aerodynamics)

MAE21109	Course Outcomes
C01	Classify the wind tunnel and boundary corrections and image processing.
CO2	Study the shock waves in supersonic flow.
CO3	Portray flow measurement technique using advance visualization methods
CO4	Conduct quantitative analysis of forces on aircraft.
CO5	Understand the various types measurement technique in wind tunnel

Course Name: Program Elective-II (MAE21110 Air Transportation)

MAE21110	Course Outcomes
C01	Understand the history of air transportation and roles of IATA and concerned authorities
CO2	Study weather forecasting method for safe flight
CO3	Study cost estimation and management in air transportation
CO4	Understand flight scheduling methods and related practices
CO5	Study reliability centered maintenance practices and related procedures

Department of Aeronautical Engineering

Course Name: Program Elective-II (MAE21111 Unmanned Aerial Vehicle Systems)

MAE21111	Course Outcomes
C01	Demonstrate various types of unmanned aerial vehicles
CO2	Design the Unmanned aerial vehicle and know the regulations
CO3	Demonstrate various types of sensors in UAV systems
CO4	Apply the concepts controlling of unmanned aerial vehicle
CO5	Develop the Unmanned aerial vehicle and test it practically

Course Name: Program Elective-II (MAE21112 Computational Fluid Dynamics)

MAE21112	Course Outcomes
CO1	Familiarize with different governing equations and boundary conditions.
CO2	Understand the partial differential equations and their physical behaviors in fluid flow problems.
CO3	Discrete governing equations using Finite difference methods and carry outnumerical error analyses.
CO4	Follow the basic procedures to generate grid for fluid flow.
C05	Apply the difference formulations to fluid flow problems.