
Master of Computer Application Dept.

 Tulsiramji Gaikwad-Patil College of Engineering & Technology

 Department of Master of Computer Application

 Subject Notes

 Academic Session: 2018 – 2019

 Subject: Computer Graphics

Semester: IV

 Q1. (a) What is polygon? How polygon is represented? Write an algorithm for

entry of an absolute Polygon into the display file.

Ans:- Polygon:- A polygon may be represented as a number of line segments connected end to

end to form a closed figure. It may be represented as the points where the sides of the polygon

are connected. The line segments which make up the polygon boundary are called sides of edges.

The endpoints of the sides are called the polygon vertices.

Fig:- Polygon

Representation of Polygon

 The closed polyline is a polygon. Each polygon has sides and edges. The end points of

the sides are called polygon vertices. To add polygon to our graphics system, we must first

decide how to represent it. There are three approached to represent polygon according to the

graphics system:

• Polygon drawing primitive approach

• Trapezoid primitive approach

• Line and point approach.

Some graphics devices supports polygon drawing primitive approach. They can directly draw the

polygon shapes. On such devices polygon are saved as a unit. Some graphics devices support

trapezoid primitive. In such device, trapezoid are formed from two scan lines and two line

segments as shown in fig. Here trapezoid are drawn by stepping down the line segments with two

Master of Computer Application Dept.

vector generator and, for each scan line, filling in all the pixels between them. Therefore every

polygon is broken up into trapezoid and its represented as series of trapezoids.

Fig. Representation of Polygon

Most of the other graphics devices do not provide any polygon supports at all. In such cases

polygon are represented using line and points. A polygon is represented as a unit and it is stored

in the display file. In a display file polygon cannot be stores only with series of line commands

because they do not specify how many of the following line commands are the part of the

polygon. Therefore new command is used in the display file to represent polygon. The opcode

for new command itself specify the number of line segments in the polygon. The fig shows the

polygon and its representation using display file.

Fig:- Polygon and its representation using display file

An Algorithm For Entry Of An Absolute Polygon Into The Display File

Algorithm POLYGON-ABS-2(AX, AY, N) Entry of an absolute polygon into the display file

Arguments AX,AY array containing the vertices of the polygon

 N the number of polygon sides

Master of Computer Application Dept.

Global DF-PEN-X, DE-PEN-Y the current pen position

Local I for stepping through the polygon sides

BEGIN

 IF N<3 RETURN ERROR ‘ POLYGON SIZE ERROR’;

 Enter the polygon instruction

 DF-PEN-X AX[N]

 DF-PEN-Y AY[N];

 DISPLAY-FILE-ENTER(N);

 Enter the instruction for the sides

 FOR I = 1 TO N DO LINE-ABS-2(AX[I], AY[I]);

RETURN;

END;

(B) Write a BRESENHAM’S algorithm for changing pixel values of the frame buffer along

a line segment with integer end points.

Ans:- A BRESENHAM’S algorithm for changing pixel values of the frame buffer along a

line segment with integer end points

Algorithm BRESENHAM(XA, YA, XB, YB, INENSITY) for changing pixel values of the

frame buffer along a line segment with integer endpoints

Arguments XA and YA are the coordinates of one endpoint

 XB and YB are the coordinates of other endpoint

 INTENSITY is the intensity setting to be used for the vector

Global FRAME the two dimensional frame buffer array

Local DX, DY the vector to be drawn

 R, C the row and column indices for the pixel

 F the final row and column

Master of Computer Application Dept.

 G for testing for a new row or column

 INC1 increment of G when row or column is unchanged

 INC2 increment for G when row or Column changes

 POS-SLOPE a flag to indicate if the slope is positive

BEGIN

 Determine the components of the vector

 DX BX – XA ;

 DY YB – YA;

 Determine the sign of the slope.

 POS-SLOPE (DX>0);

 IF DY < 0 THEN POS-SLOPE NOT POS-SLOPE;

 Decide on whether to step across columns or up rows

 IF |DX| > |DY|

 BEGIN

 This is the gentle slope case

 IF DX >0

 BEGIN

C XA;

 R YA;

 F XB;

 END;

 ELSE

 BEGIN

C XB;

 R YB;

 F XA;

 END;

Master of Computer Application Dept.

INC1 2 * |DY|;

 G 2 * |DY| - |DX|;

 INC2 2 * (|DY| - |DX|)

 IF POS-SLOPE THEN

 BEGIN

 Now step across the line segment

 WHILE C <= F DO

 BEGIN

 Set the nearest pixel in the frame buffer

 FRAME[C, R] INTENSITY;

 Next column

 C C + 1;

 IF C>= 0 THEN

 BEGIN

 R R +1;

 G ;

 END;

 END;

 END;

 ELSE

 BEGIN

 WHILE C <= F DO

 FRAME[C, R] INTENSITY;

 C C+1;

 IF G >0 THEN

 BEGIN

 R R + 1;

Master of Computer Application Dept.

 G INC2;

 END;

 ELSE G G + INC1;

 END;

 END;

END;

ELSE

 BEGIN

 This is the sharp slope case

 Here the above steps are repeated

 With the roles of x and y interchanged

 End;

RETURN;

END;

(C) Explain segment table. Write an algorithm to create a named segment.

Ans:- Segment Table:- We would like to organised our display file to reflect this subpicture

structure. We would like to divide our display file into segments, each segment corresponding to

a component of the overall display. We must give each segment its own unique name so that we

can specify it. If we are to change the visibility of a segment, we must have some way to

distinguish that segment from all the others. When we refer to display a file segment, we must

know which display-file instructions belong to it. This may be determines by knowing where the

display file instructions for the segment being and how many of them there are. In our system we

shall do this by forming a segment table. We use a number for the mane of the segment. Simple

array will serve to hold segment properties, and the segment name will be used as the index into

these arrays. We shall have one array containing display file starting location. A second array

will hold segment size information, while a third will indicates visibility, and so on.

SEGMENT SEGMENT – SEGMENT –
VISIBILITY SCALE – X

Master of Computer Application Dept.

NAME START SIZE

0

1

2

3

4

.

.

.

.

.

Fig:- Segment Table

Master of Computer Application Dept.

An Algorithm to Create A Named Segment

Algorithm CREATE-SEGMENT(SEGMENT – NAME) User routine to create a names

segment

Argument SEGMENT-NAME the segment name

Global NOW-OPEN the segment currently open

 FREE the index of the next free display file cell.

SEGMENT-START, SEGMENT-SIZE, VISIBILITY, ANGLE, SCALE-X,

SCALE – Y, TRANSLATE – X, TRANSLATE- Y arrays that make up the

segment tbale

Constant NUMBER-OF-SEGMENT size of the segment table.

BEGIN

 IF NOW-OPEN > 0 THEN RETURN ERROR ‘ SEGMENT STILL OPEN’;

 IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS

 THEN

 RETURN ERROR ‘ INVALID SEGMENT NAME’

 IF SEGMENT-SIZE[SEGMENT-NEME] > 0 THEN

 RETURN ERROR ‘SEGMENT ALREADY EXISTS’;

 SEGMENT-START[SEGMENT-NAME] FREE;

 SEGMENT-SIZE[SEGMENT-NAME]

 VISIBILITY [SEGMENT-NAME] VISIBILITY[0];

 ANGLE[SEGMENT-NAME] ANGLE[0];

 SCALE-X[SEGMENT-NAME] SCALE – X[0];

 SCALE-Y[SEGMENT-NAME] SCALE – Y[0];

Master of Computer Application Dept.

 TRANSLATE-X[SEGMENT-NAME] TRANSLATE – X[0];

 TRANSLATE -Y[SEGMENT-NAME] TRANSLATE – Y[0];

 NOW-OPEN SEGMENT-NAME

RETURN

END;

(D) Explain

 (i) Homogeneous Co – ordinates and Translation

 (ii) Rotation about an arbitrary point.

Ans: (i) Homogeneous co – ordinates and Translation : In homogeneous coordinates we use

3 x 3 matrices instead of 2 x 2, introducing an additional dummy coordinate w; points are

specified by three numbers instead two. The first homogeneous coordinate will be the product of

x and w, the second will be the product of y and w, and third will be the just w. A coordinate

point (x,y) will be represented by triple (xw, yw, w). The x and y coordinate can easily be

recovered by dividing the first and second numbers by the third. We will not really used extra

number w until we consider three-dimensional perspective transformations. In two dimensional

its value is usually kept at 1 for simplicity. Still, we will discuss it in its generality in anticipation

of the three-dimensional transformations.

In homogeneous coordinates our scaling matrix

Becomes

If we apply this to the point (xw, yw, w), we obtain

 =

Master of Computer Application Dept.

Dividing by the third number w gives

 (, y)

Which is the correctly scaled point.

The counter clockwise rotation matrix

Becomes, using homogeneous coordinates,

Applying it to point (x,y) with homogeneous coordinates (xw, yw, w) gives

[xw yw w] = [(xw - yw) (xw + yw)

 w]

For the correctly rotated point

(x – y),(x + y)

The homogeneous coordinates transformation matrix for a translation of tx, ty is

To show that this is so, we apply the matrix

[xw yw w] = [(xw + txw) (yw+tyw) w]

For the translated point (x + tx, y + ty)

(ii) Rotation about an arbitrary point

Let’s determine the transformation matrix for a couterclockwise rotation about point (xp, yp)

Master of Computer Application Dept.

We shall do this by three transformation steps. We shall translate the point (xp, yp) to the origin,

rotate about the origin, and then translate the center of rotation back where it belong.

The translation matrix to move point (xp, yp) to the origin is given by

The rotation matrix for counterclockwise rotation of point about the origin is given as

The translation matrix to move the center point back to its original position is given as

Master of Computer Application Dept.

Therefore, the overall transformation matrix for a counter clockwise rotation by an angle Ɵ about

the point (xp, yp) is given as

This is the overall transformation for a rotation by Ɵ counterclockwise about the point (xp,yp).

Q1. (A) Write and Explain DDA algorithm for line generation.

Ans:- Digital Differential Analyser

 We know that the slope of a straight line is given as

 ----------- (1)

The above differential equation ca be used to obtain a rasterized straight line, For any given x

interval dx along a line, we can compute the corresponding y interval dy for the equation (1) as

Master of Computer Application Dept.

 ---------------(2)

Similarly, we can obtain the x interval dx corresponding to a specific dy as

 ---------------------(3)

Once the intervals are known the values for next a and next y on the straight line can be obtained

as follows

 --------------- (4)

And

 --------------- (5)

The equation 4 and 5 represents a recursion for successive values of x and y along the required

line. Such a way of rasterizing a line is called a Digital differential analyzer (DDA). For simple

DDA either dx or dy, whichever is larger, is chosen as one raster unit i.e.

 If | dx | >= | dy | then

dx = 1

else dy = 1

With this simplification, if dx = 1 then

We have

Master of Computer Application Dept.

If dy = 1 then

We have

Let us see the DDA algorithm

1. Read the line end points (x1, y1) and (x2,y2) such that they are not equal.

2. dx= | x2 – x1| and dy = | y2 – y1|

3. if (dx >= dy) then

length = dx

else

 length = dy

end if

4. dx = (x2 – x1) / length

dy = (y2 – y1) / length

[This makes a either dx or dy equal to 1 because length is either | x2 – x1| or | y2 – y1|.

Therefore, the incremental value for either x or y is one]

5. x = x1 + 0.5 * (sign (dx)

y = y1 + 0.5 * sign (dy)

[Here, sign function makes the algorithm work in all quadrant. It returns -1, 0, 1

depending on whether its arguments is <0, =0,>0 respectively. The factor 0.5 makes it

possible to round the values in the integer function rather than truncating them]

6. i =1

While (i <= length)

{

 Plot (Integer (x), integer (y))

 X = x + dx

 Y = y + dy

 I = i + 1

Master of Computer Application Dept.

}

7. Stop

(B) What is frame buffer? Write an algorithm to display the contents of a frame buffer.

Ans :- Frame Buffer :- A frame buffer is a large, contiguous piece of computer memory. At a

minimum there is one memory bit for each pixel in the rater; this amount of memory is called a

bit plane. The picture is built up in the frame buffer one bit at a time. You know that a memory

bit has only two states, therefore a single bit plane yields a black-and white display. You know

that a frame buffer is a digital device and the CRT is an analog device. Therefore, a conversion

from a digital representation to an analog signal must take place when information is read from

the frame buffer and displayed on the raster CRT graphics device. For this you can use a digital

to analog converter (DAC).Each pixel in the frame buffer must be accessed and converted

before it is visible on the raster CRT.

Algorithm to display the contents of a Frame buffer

Algorithm Display This displays the contents of the frame buffer

Global : FRAME the frame buffer array

 WIDTH-START and HEIGHT-START the starting indices of FRAME

 WIDTH-END and HEIGHT-END the ending indices of FRAME

Local: X, Y the pixel being displayed

BEGIN

 FOR Y = HEIGHT-END TO HEIGHT-START DO

 PRINT FOR X = WIDTH-START TO WIDTH-END, FRAME[X,Y];

 RETURN;

END;

(C) Write and explain Bresenham’s line generation algorithm with suitable example.

Master of Computer Application Dept.

Ans:- Bresenham’s line algorithm uses only integer addition and subtraction and multiplication

by 2, and we know that the computer can perform the operations of integer addition and

subtraction very rapidly. The computer is also time-efficient when performing integer

multiplication by powers of 2. Therefore, it is an efficient method for scan-converting straight

lines.

Although developed originally for use with digital plotters, Bresenham's algorithm is

equally suited for use with CRT raster devices. The basic principle of Bresenham's line algorithm

is to select the optimum raster locations to represent a straight line. To accomplish this, the

algorithm always increments either x or y by one unit depending on the slope of line. The

increment in the other variable is determined by examining the distance between the actual line

location and the nearest pixel. This distance is called decision variable or the error.

This is illustrated in the Fig. below.

As shown in the figure above, the line does not pass through all raster points (pixels). It passes

through raster point (0, 0) and subsequently crosses three pixels. It is seen that the intercept of

line with the line x = 1 is closer to the line y = 0, i.e. pixel (1, 0) than to the line y = 1 i.e. Pixel

(1, 1). Hence, in this case, the raster point at (1, 0) better represents the path of the line than that

at (1. 1). The intercept of the line with the line x = 2 is close to the line y = 1. i.e. pixel (2, 1) than

to the line y = 0. i.e. pixel (2,0). Hence, the raster point at (2, 1) better represents the path of the

line, as shown in the figure above.

Bresenham’s Line algorithm

1. Read the line end points (x1, y1) and (x2,y2) such that they are not equal.

 [if equal then plot that point and exit]

Master of Computer Application Dept.

2. Δx = |x2 - x1| and Δy = |y2 - y1|

3. [Initialize starting point]

 x = x1 and y = y1

4. e = 2 * Δy - Δx

 [Initialize value of decision variable or error to compensate for nonzero intercepts]

5. i=1[Initialize counter]

6. Plot(x , y)

7. whi1e(e ≥ 0)

 {

 y = y + 1

 e = e - 2 * Δx

 }

 x = x + 1

 e = e + 2 * Δy

8. i = i + 1

9. if(i ≤ Δx) then go to step6.

10. Stop.

(D) Write a transformation routine in terms of scaling, rotation and translation.

Ans:- We construct routines for translating, rotating and scaling. The routines that create the

transformation will modify a homogeneous coordinate’s transformation matrix.

 The following three algorithms describe user routines for saving transformation

parameters until it is time interpret the display file.

Master of Computer Application Dept.

Algorithm TRANSLATE(TX,TY) User routine to set the translation parameters

Arguments: TX,TY the translation amount

Global: TRNX, TRNY storage for the translation parameters.

Begin

 TRNX<- TX;

 TRNY <- TY;

 CALL NEWFRAME;

 RETURN;

END;

Algorithm SCALE (SX, SY) User routine to set the scaling parameters

Argument: SX, SY the scaling factors

Global: SCLX, SCLY storage for the scale parameters.

Begin

 SCLX <- SX;

 SCLY <- SY;

 CALL NEWFRAME;

 RETURN;

END;

Algorithm ROTATE(A) User routine to set the rotation angle.

Arguments: A the rotation angle

Global: ANGL a place to save the rotation angle.

Master of Computer Application Dept.

BEGIN

ANGL <- A

 CALL NEWFRAME;

 RETURN

END;

1. (a) Write an algorithm for vector generation of a line and explain in detail.

Ans:- Vector Generation of a Line

Digital Differential Analyser

 We know that the slope of a straight line is given as

 ----------- (1)

The above differential equation ca be used to obtain a rasterized straight line, For any given x

interval dx along a line, we can compute the corresponding y interval dy for the equation (1) as

 ---------------(2)

Similarly, we can obtain the x interval dx corresponding to a specific dy as

 ---------------------(3)

Once the intervals are known the values for next a and next y on the straight line can be obtained

as follows

 --------------- (4)

Master of Computer Application Dept.

And

 --------------- (5)

The equation 4 and 5 represents a recursion for successive values of x and y along the required

line. Such a way of rasterizing a line is called a Digital differential analyzer (DDA). For simple

DDA either dx or dy, whichever is larger, is chosen as one raster unit i.e.

 If | dx | >= | dy | then

dx = 1

else dy = 1

With this simplification, if dx = 1 then

We have

If dy = 1 then

We have

Let us see the DDA algorithm

1. Read the line end points (x1, y1) and (x2,y2) such that they are not equal.

2. dx= | x2 – x1| and dy = | y2 – y1|

3. if (dx >= dy) then

length = dx

else

 length = dy

Master of Computer Application Dept.

end if

4. dx = (x2 – x1) / length

dy = (y2 – y1) / length

[This makes a either dx or dy equal to 1 because length is either | x2 – x1| or | y2 – y1|.

Therefore, the incremental value for either x or y is one]

5. x = x1 + 0.5 * (sign (dx)

y = y1 + 0.5 * sign (dy)

[Here, sign function makes the algorithm work in all quadrant. It returns -1, 0, 1

depending on whether its arguments is <0, =0,>0 respectively. The factor 0.5 makes it

possible to round the values in the integer function rather than truncating them]

6. i =1

While (i <= length)

{

 Plot (Integer (x), integer (y))

 X = x + dx

 Y = y + dy

 I = i + 1

}

7. Stop

(b) Explain segment creation in detail.

Ans:- Segment Table:- We would like to organised our display file to reflect this subpicture

structure. We would like to divide our display file into segments, each segment corresponding to

a component of the overall display. We must give each segment its own unique name so that we

can specify it. If we are to change the visibility of a segment, we must have some way to

distinguish that segment from all the others. When we refer to display a file segment, we must

know which display-file instructions belong to it. This may be determines by knowing where the

display file instructions for the segment being and how many of them there are. In our system we

shall do this by forming a segment table. We use a number for the mane of the segment. Simple

array will serve to hold segment properties, and the segment name will be used as the index into

these arrays. We shall have one array containing display file starting location. A second array

will hold segment size information, while a third will indicates visibility, and so on.

Master of Computer Application Dept.

SEGMENT

NAME

SEGMENT –

START

SEGMENT –

SIZE
VISIBILITY SCALE – X

0

1

2

3

4

.

.

.

.

.

Fig:- Segment Table

An Algorithm to Create A Named Segment

Algorithm CREATE-SEGMENT(SEGMENT – NAME) User routine to create a names

segment

Argument SEGMENT-NAME the segment name

Global NOW-OPEN the segment currently open

 FREE the index of the next free display file cell.

SEGMENT-START, SEGMENT-SIZE, VISIBILITY, ANGLE, SCALE-X,

SCALE – Y, TRANSLATE – X, TRANSLATE- Y arrays that make up the

segment tbale

Constant NUMBER-OF-SEGMENT size of the segment table.

BEGIN

Master of Computer Application Dept.

 IF NOW-OPEN > 0 THEN RETURN ERROR ‘ SEGMENT STILL OPEN’;

 IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS

 THEN

 RETURN ERROR ‘ INVALID SEGMENT NAME’

 IF SEGMENT-SIZE[SEGMENT-NEME] > 0 THEN

 RETURN ERROR ‘SEGMENT ALREADY EXISTS’;

 SEGMENT-START[SEGMENT-NAME] FREE;

 SEGMENT-SIZE[SEGMENT-NAME]

 VISIBILITY [SEGMENT-NAME] VISIBILITY[0];

 ANGLE[SEGMENT-NAME] ANGLE[0];

 SCALE-X[SEGMENT-NAME] SCALE – X[0];

 SCALE-Y[SEGMENT-NAME] SCALE – Y[0];

 TRANSLATE-X[SEGMENT-NAME] TRANSLATE – X[0];

 TRANSLATE -Y[SEGMENT-NAME] TRANSLATE – Y[0];

 NOW-OPEN SEGMENT-NAME

RETURN

END;

2. (a) Write an algorithm for vector generation of a line and explain in detail.

Ans:- Vector Generation of a Line

Digital Differential Analyser

 We know that the slope of a straight line is given as

 ----------- (1)

Master of Computer Application Dept.

The above differential equation ca be used to obtain a rasterized straight line, For any given x

interval dx along a line, we can compute the corresponding y interval dy for the equation (1) as

 ---------------(2)

Similarly, we can obtain the x interval dx corresponding to a specific dy as

 ---------------------(3)

Once the intervals are known the values for next a and next y on the straight line can be obtained

as follows

 --------------- (4)

And

 --------------- (5)

The equation 4 and 5 represents a recursion for successive values of x and y along the required

line. Such a way of rasterizing a line is called a Digital differential analyzer (DDA). For simple

DDA either dx or dy, whichever is larger, is chosen as one raster unit i.e.

 If | dx | >= | dy | then

dx = 1

else dy = 1

With this simplification, if dx = 1 then

We have

Master of Computer Application Dept.

If dy = 1 then

We have

Let us see the DDA algorithm

8. Read the line end points (x1, y1) and (x2,y2) such that they are not equal.

9. dx= | x2 – x1| and dy = | y2 – y1|

10. if (dx >= dy) then

length = dx

else

 length = dy

end if

11. dx = (x2 – x1) / length

dy = (y2 – y1) / length

[This makes a either dx or dy equal to 1 because length is either | x2 – x1| or | y2 – y1|.

Therefore, the incremental value for either x or y is one]

12. x = x1 + 0.5 * (sign (dx)

y = y1 + 0.5 * sign (dy)

[Here, sign function makes the algorithm work in all quadrant. It returns -1, 0, 1

depending on whether its arguments is <0, =0,>0 respectively. The factor 0.5 makes it

possible to round the values in the integer function rather than truncating them]

13. i =1

While (i <= length)

{

Master of Computer Application Dept.

 Plot (Integer (x), integer (y))

 X = x + dx

 Y = y + dy

 I = i + 1

}

14. Stop

(b) Explain segment creation in detail.

Ans:- Segment Table:- We would like to organised our display file to reflect this subpicture

structure. We would like to divide our display file into segments, each segment corresponding to

a component of the overall display. We must give each segment its own unique name so that we

can specify it. If we are to change the visibility of a segment, we must have some way to

distinguish that segment from all the others. When we refer to display a file segment, we must

know which display-file instructions belong to it. This may be determines by knowing where the

display file instructions for the segment being and how many of them there are. In our system we

shall do this by forming a segment table. We use a number for the mane of the segment. Simple

array will serve to hold segment properties, and the segment name will be used as the index into

these arrays. We shall have one array containing display file starting location. A second array

will hold segment size information, while a third will indicates visibility, and so on.

SEGMENT

NAME

SEGMENT –

START

SEGMENT –

SIZE
VISIBILITY SCALE – X

0

1

2

3

4

.

.

.

Master of Computer Application Dept.

.

.

Fig:- Segment Table

An Algorithm to Create A Named Segment

Algorithm CREATE-SEGMENT(SEGMENT – NAME) User routine to create a names

segment

Argument SEGMENT-NAME the segment name

Global NOW-OPEN the segment currently open

 FREE the index of the next free display file cell.

SEGMENT-START, SEGMENT-SIZE, VISIBILITY, ANGLE, SCALE-X,

SCALE – Y, TRANSLATE – X, TRANSLATE- Y arrays that make up the

segment tbale

Constant NUMBER-OF-SEGMENT size of the segment table.

BEGIN

 IF NOW-OPEN > 0 THEN RETURN ERROR ‘ SEGMENT STILL OPEN’;

 IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS

 THEN

 RETURN ERROR ‘ INVALID SEGMENT NAME’

 IF SEGMENT-SIZE[SEGMENT-NEME] > 0 THEN

 RETURN ERROR ‘SEGMENT ALREADY EXISTS’;

 SEGMENT-START[SEGMENT-NAME] FREE;

 SEGMENT-SIZE[SEGMENT-NAME]

 VISIBILITY [SEGMENT-NAME] VISIBILITY[0];

Master of Computer Application Dept.

 ANGLE[SEGMENT-NAME] ANGLE[0];

 SCALE-X[SEGMENT-NAME] SCALE – X[0];

 SCALE-Y[SEGMENT-NAME] SCALE – Y[0];

 TRANSLATE-X[SEGMENT-NAME] TRANSLATE – X[0];

 TRANSLATE -Y[SEGMENT-NAME] TRANSLATE – Y[0];

 NOW-OPEN SEGMENT-NAME

RETURN

END;

Master of Computer Application Dept.

UNIT - II

Q2.(a) Write CLIP_POLYGON_EDGE (OP, X, Y) algorithm to close and enter a clipped

polygon into the display file.

Ans:- Clipping polygon routine will remove some of the polygon sides, and it will insert a move

command instead of a line command along the window boundary. This change in the number of

sides in the polygon must be reflected in our initial polygon-drawing operation code. The

algorithm for clip polygon edge is as follow

Algorithm CLIP_POLYGON_EDGE (OP, X, Y) close and enter a clipped polygon into the

display file.

Argument OP, X, Y a display-file instruction

Global PFLAG indicates that a polygon is being drawn

 COUNT-IN the number of sides remaining to be processed

 COUNT-OUT the number of sides to be entered in the display file.

 IT, XT, YT temporary storage arrays for a polygon

 NEEDFIRST array of indictors for saving the first command

 FIRSTOP, FIRSTX, FIRSTY arrays for saving the first command

 CLOSSING indicates the stage in polygon

Local I for stepping through the polygon sides.

BEGIN

 COUNT-IN COUNT-IN – 1;

 CLIP-LEFT (OP, X, Y);

 IF COUNT-IN ≠ 0 THEN RETURN;

 Close the clipped polygon

 CLOSING 1;

 IF NOT NEEDFIRST[1] THEN CLIP-LEFT(FIRSTOP[1], FIRSTX[1], FIRST[1]);

 CLOSING 2;

(b) Write an algorithm ENABLE_GROUP (CLASS) to enable an input devices class.

Ans:-

Master of Computer Application Dept.

Algorithm ENABLE_GROUP (CLASS) Routine to enable an input device class.

Argument CLASS the code for the class to be enabled

Global BUTTON, PICK, KEYBOARD, LOCATOR, VALUATOR device flags

BEGIN

 IF CLASS = 1 THEN

 BEGIN

 PERFOMR ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

BUTTON DEVICES;

 BUTTON TRUE;

 END;

 IF CLASS = 2 THEN

 BEGIN

 PERFOMR ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE PICK

DEVICES;

 PICK TRUE;

 END;

 IF CLASS = 3 THEN

 BEGIN

 PERFOMR ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

KEYBOARD DEVICES;

 KEYBOARD TRUE;

 END;

 IF CLASS = 4 THEN

 BEGIN

 PERFOMR ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

LOCATOR DEVICES;

 LOCATOR TRUE;

 END;

 IF CLASS = 5 THEN

Master of Computer Application Dept.

 BEGIN

 PERFOMR ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

VALUATOR DEVICES;

 VALUATOR TRUE;

 END;

 RETURN;

END;

(C) Explain:

 (i) Simulating a locator with a pick

 (ii) Echoing.

Ans:- (i) Simulating a locator with a pick :- While the light pen can be used to select an object

on the screen, it does not give that object’s position. Nor it can be used to indicate a position

where there is no object, as can be done with a joystick or tablet. In order to use a light pen for

position information, a tracking cross is employed. A tracking cross is a small cross made of four

or more separate line segment. This is placed at some known position on the screen and selected

so that it is detectable by the light pen (see fig.)

Fig:- Light pen and tracking cross

The pen is positioned at the center of the cross. Then a s the pen is moved, it will encounter one

of the cross arm. If the pen is moved slightly to the right, it will encounter the right arm of the

cross. This information is used to move the cross slightly to the right. After each refresh the

cross will be moved until the light pen in once again centered. (see fig.)

Master of Computer Application Dept.

Fig:- if the light pen encounters one of the arms of the cross, the position of the cross is

shifted.

A similar action is taken for all of the other arms of the cross so that the tracking cross will

follow the movements of the light pen. Since the position of the center of the tracking cross is

known, positional information can be entered by “grabing” the cross with the light pen and

moving it to the desired location.

(ii) ECHOING

 An important part of an interactive is echoing. Echoing provides the user with

information about his actions. This allows the user to compare what he has done against what he

wanted to do. For keyboard input, echoing usually takes the form of displaying the typed

characters. Locator may be echoed by a screen cursor displayed at the current locator position.

This allows the user to see the current locator setting and to relate its position to the object on

the display. (see fig.)

Fig:- Echoing a location

A pick may be echoed by identifying the selected objects on the display. The selected objects

may be flashed or made brighter or, perhaps, altered in color. This will allow the user to

determine whether or not he has selected the intended objects (see fig.)

Master of Computer Application Dept.

Fig:- Echoing a pick

 Buttons, when used to select menu items, can be echoed by flashing or highlighting the

selected items. (see fig.)

Fig:- Echoing buttons and menu selection

For a valuator, display of the current setting in numerical form or as a position on a scale is

possible. (See. Fig.)

Fig.:- Echoing a value

It is important that some form of echoing be present, no matter what form it takes.

(d) What is viewing transformation? Write algorithms for setting the viewport and window

dimensions.

Ans:- Viewing Transformation :- There is a object model and there is the image of the object

which appears on the display. When we speak of the object, we are actually referring to a model

of the object stored in the computer. The object model is said to reside in object space. This

model represents the object using the physical units of length. In the object space, lengths of the

object may be measured in any units from light years to angstroms. In the object space, length of

the image on the screen, however, must be measured in screen coordinates. (see fig)

Master of Computer Application Dept.

Fig:- In the object space, position is measured in physical units, such as meter. In the image

space, position is given in normalized screen coordinates

We must have some way of converting form the object space units of measure to those of the

image space. By scaling, we can uniformly reduce the size of the object until its dimension lie

between 0 and 1. Very small objects can be enlarged until their overall dimension is almost 1

unit. The physical dimensions of the object are scaled until they are suitable for display (see fig.).

Fig:- A scaling transformation will convert object coordinates units to normalized screen

coordinate

The object is too complex to show in its entirely or that we are particularly interested in just a

portion of it. We would like to imagine a box about a portion of the object. We would only

display what is enclosed in the box. Such box is called a window. (see fig.)

Master of Computer Application Dept.

Fig:- A window to view only part of an object

We would like to imagine a box on the screen and have the image confirmed to that box. Such a

box in the screen space is called a viewport. (see fig)

Fig:- A viewport to define the part of the screen to be used

When the window is changed, we see a different part of the object shown at the same position on

the display (see fig).

Fig:- Different window, same viewport

Master of Computer Application Dept.

If we change the viewport, we see the same part of the object drawn at a different place on the

display. (see fig.)

Fig:- same window, different viewport

This can be done with the following three steps. First, the object together with its window is

translated until the lower-left corner of the window is at the origin. Second, the object and

window we scaled until the window has the dimension of the viewport. In effect, this converts

objects and window into image and viewport. The final transformation step is another translation

to move the viewport to its correct position on the screen. (see fig.)

Fig:- Steps in the viewing transformation

We are really trying to do two things. We are changing the window size to become the size of the

viewport (scaling) and we are positioning it at the desired location on the screen (translating).

Master of Computer Application Dept.

The overall transformation which performs these three steps. We shall call the viewing

transformation.

Fig:- A viewport to define the part of the screen to be used.

Algorithms for setting the viewport and window dimensions are given below:

Algorithm SET-VIEWPORT(XL, XH, YL, YH) User routine foe specifying the viewport

Arguments XL, XH the left and right viewport boundaries

 YL, YH the bottom and top viewport boundaries.

Global VXL-HOLD, VXH-HOLD, VYL-HOLD, VYH-HOLD storage for the viewport

boundaries

BEGIN

 IF XL >= XH OR YL >= YH THEN RETURN ERROR ‘BAD VIEWPORT’;

 VXL-HOLD XL;

 VXH-HOLD XH;

 VYL-HOLD YL;

 VYH-HOLD YH;

 RETURN;

END;

Algorithm SET-WINDOW(XL, XH, YL, YH) user routine for specifying the window

Arguments XL, XH the left and right viewport boundaries

 YL, YH the bottom and top viewport boundaries.

Master of Computer Application Dept.

Global WXL-HOLD, WXH-HOLD, WYL-HOLD, WYH-HOLD storage for the

window boundaries

BEGIN

 IF XL >= XH OR YL >= YH THEN RETURN ERROR ‘BAD VIEWPORT’;

 WXL-HOLD XL;

 WXH-HOLD XH;

 WYL-HOLD YL;

 WYH-HOLD YH;

 RETURN;

END;

2. (A) What is clipping? Explain Sutherland-Hodgman algorithm.

Ans:- Clipping :- The primary use of clipping in computer graphics is to remove

objects, lines, or line segments that are outside the viewing pane. The viewing

transformation is insensitive to the position of points relative to the viewing volume −

especially those points behind the viewer − and it is necessary to remove these points

before generating the view.

Sutherland-Hodgman algorithm.

 A polygon can be clipped by processing its boundary as a whole against each

window edge. This is achieved by processing all polygon vertices against each clip

rectangle boundary in turn. beginning with the original set of polygon vertices, we could

first clip the polygon against the left rectangle boundary to produce a new sequence of

vertices. The new set of vertices could then be successively passed to a right boundary

clipper, a top boundary clipper and a bottom boundary clipper, as shown in figure (l). At

each step a new set of polygon vertices is generated and passed to the next window

boundary clipper. This is the fundamental idea used in the Sutherland - Hodgeman

algorithm.

Master of Computer Application Dept.

The output of the algorithm is a list of polygon vertices all of which are on the visible side of a

clipping plane. Such each edge of the polygon is individually compared with the clipping plane.

This is achieved by processing two vertices of each edge of the polygon around the clipping

boundary or plane. This results in four possible relationships between the edge and the clipping

boundary or Plane. (See Fig. m).

Master of Computer Application Dept.

1. If the first vertex of the edge is outside the window boundary and the second vertex of

the edge is inside then the intersection point of the polygon edge with the window

boundary and the second vertex are added to the output vertex list (See Fig. m (a)).

2. If both vertices of the edge are inside the window boundary, only the second vertex is

added to the output vertex list. (See Fig. m (b)).

3. If the first vertex of the edge is inside the window boundary and the second vertex of the

edge is outside, only the edge intersection with the window boundary is added to the

output vertex list. (See Fig. m (c)).

4. If both vertices of the edge are outside the window boundary, nothing is added to the

output list. (See Fig. m (d)).

Once all vertices are processed for one clip window boundary, the output list of vertices is

clipped against the next window boundary. Going through above four cases we can realize that

there are two key processes in this algorithm.

1. Determining the visibility of a point or vertex (lnside - Outside test) and

2. Determining the intersection of the polygon edge and the clipping plane.

One way of determining the visibility of a point or vertex is described here. Consider that two

points A and B define the window boundary and point under consideration is V, then these three

points define a plane. Two vectors which lie in that plane are AB and AV. If this plane is

considered in the xy plane, then the vector cross product AV x AB has only a component given

by

Master of Computer Application Dept.

The sign of the z component decides the position of Point V with respect to window boundary.

If z is:

Positive - Point is on the right side of the window boundary.

Zero - Point is on the window boundary.

Negative - Point is on the left side of the window boundary.

Sutherland-Hodgeman Polygon Clipping Algorithm:-

1. Read coordinates of all vertices of the Polygon.

2. Read coordinates of the dipping window

3. Consider the left edge of the window

4. Compare the vertices of each edge of the polygon, individually with the clipping plane.

5. Save the resulting intersections and vertices in the new list of vertices according to four

possible relationships between the edge and the clipping boundary.

6. Repeat the steps 4 and 5 for remaining edges or the clipping window. Each time the

resultant list of vertices is successively passed to process the next edge of the clipping

window.

7. Stop.

Example :- For a polygon and clipping window shown in figure below give the list of vertices

after each boundary clipping.

Solution:- Original polygon vertices are V1, V2, V3, V4, and V5. After clipping each boundary

the new vertices are as shown in figure above.

Master of Computer Application Dept.

(B) Explain Input Device handling algorithm for enable group.

Ans:- Input Device handling algorithm for enable group.

Algorithm ENABLE-GROUP(CLASS) Routine to enable an input device class

Arguments: CLASS the code for the class to be enables

Global: BUTTON PICK, KEYBOARD, LOCATOR, VALUATOR device flags

BEGIN
 IF CLASS = 1 THEN
 BEGIN
 PERFORM ALL OPERATION NEEDED TO [PERMIT INPUT FROM THE BUTTOM
DEVICE
 BUTTON <- TRUE;
 END;
 IF CLASS = 2 THEN
 BEGIN
 PERFORM ALL OPERATION NEEDED TO PERMIT INPUT FROM THE PICKDEVICE
 PICK <- TRUE;
 END;
IF CLASS = 3 THEN
 BEGIN
 PERFORM ALL OPERATION NEEDED TO [PERMIT INPUT FROM THE KEYBOARD
DEVICE
 KEYBOARD <- TRUE;
 END;
IF CLASS = 4 THEN
 BEGIN
 PERFORM ALL OPERATION NEEDED TO [PERMIT INPUT FROM THE LOCATOR
DEVICE
 LOCATOR <- TRUE;
 END;
IF CLASS = 5 THEN
 BEGIN
 PERFORM ALL OPERATION NEEDED TO PERMIT INPUT FROM THE VALUATOR
DEVICE
 VALUATOR <- TRUE;
 END;

Master of Computer Application Dept.

 RETURN
END

(C) Explain locator, selector and multiple windowing in detail.

ANS:- Locator:- Locator are devices which gives position information. The computer typically

receives from a locator the coordinator for a point. Using locator we can indicate position on the

screen.

 Let us first consider some locator devices. One example of a locator is a pair of

thumbwheels such as is found on the Tektronix 400 graphical terminal. These are two

potentiometer mounted on the keyboard, which the user can adjust. One potentiometer is used for

x direction, the other for the y direction. The two potentiometer readings together form the

coordinates of a point.

Fig: Thumbwheel entry of position.

 Another locator device is a joystick. A joystick has two potentiometers, just like a pair of

thumbwheels. They have been attached to a single lever. Moving the lever forward or back

changes the setting on one potentiometer. Moving it left or right changes the setting on the other

potentiometer. Thus with a joystick both x and y coordinate positions can be simultaneously

altered by the motion of a single lever. Joysticks are inexpensive and are quite common on

display where only rough positioning is needed.

Master of Computer Application Dept.

Fig 2: Joystick.

 Some locator devices use switches attached to wheels instead of potentiometers. As the

wheels are turned, the switches produce pulses which may be counted. This mechanism is often

found in mice and track balls. As the mouse is pushed across a surface, the wheels are turned,

providing distance and direction information. A mouse may also come with one or more buttons

which may ne sensed. A track ball is essentially a mouse turned upside down. The ball which

turns the wheels is large and is moved directly by the operator.

Fig 3: Mouse and Track Ball

 If we had a paper drawing or a blueprint which we wished to enter onto the machine, we

would find that the joystick was not very useful. Although the joystick could indicate a position

on the screen. For applications such as tracing we need a device called digitizer or a tablet. A

tablet is composed of a flat surface and a penlike stylus or windowlike tablet cursor on the

surface. If tablet entries are to be coordinated with items already on the screen, then some form

of feedback, such as a screen cursor, is useful.

Fig 4: Tablet

Selector: Selector devices are used to select a particular graphical object. A selector may pick a

particular item but provide no information about where that item is located on the screen.

Master of Computer Application Dept.

 An example of selector device is a light pen. A light pen is composed of a photocell

mounted in a penlike case. This pen may be pointed at the screen on a refresh display. The pen

will send a pulse whenever the phosphor below it is illuminated. While the image on a refresh

display may appear to be stable, it is in fact blinking on a off faster than the eye can detect. When

the light pen senses the phosphor beneath it being illuminated, it can interrupt the display

processor interpreting of the display file.

Fig 5: Light Pen

(D) Explain how to add a new picture element to the image. Write a routine to interactively

select a point.

Ans:- Point Plotting method gives the user the capability of selecting a particular point on the

screen. This is usually done by a combination of a locator and a button. The locator is used to tell

which point the user selects. The button indicates when the locator is correctly positioned. The

algorithm to perform point plotting must await the button event; as soon as it occurs, the locator

may be read. The selection of point can be used in many different ways.

Algorithm AWAIT-BUTTON-GET-LOCATOR (WAIT, BUTTON-NUM,X,Y) User routine

to inractively select a point.

Arguments WAIT the time to wait for a button event.

 BUTTON-NUM for return of the user’s button selection.

 X,Y the point the user selects

BEGIN

Master of Computer Application Dept.

 AWAIT-BUTTON(WAIT, BUTTON-NUM(;

 READ-LOCATOR(X,Y);

 RETURN;

END;

Master of Computer Application Dept.

UNIT - III

Q3. (a) Write the three dimensional LINE and MOVE algorithm

Ans:- The three dimensional LINE and MOVE algorithm are as follows:

1) Algorithm MOVE-ABS-3(X,Y,Z) the 3D absolute move

Arguments X,Y,Z world coordinates of the point to move the pen to

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X X;

DE-PEN-Y Y;

 DF-PEN-Z Z;

 DISPLAY-FILE-ENTER(1);

 RETURN;

END

2) Algorithm MOVE-REL-3(DX,DY,DZ) the 3D relative move

Arguments DX, DY, DZ change to be made to the pen position

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X DF-PEN-X + DX;

DE-PEN-Y DF-PEN-X + DY;

 DF-PEN-Z DF-PEN-X + DZ;

 DISPLAY-FILE-ENTER(1);

 RETURN;

END

3) Algorithm LINE-ABS-3(X,Y,Z) the 3D absolute line drawing routine

Arguments X,Y,Z world coordinates of the point to draw the line to

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X X;

DE-PEN-Y Y;

 DF-PEN-Z Z;

Master of Computer Application Dept.

 DISPLAY-FILE-ENTER(2);

 RETURN;

END

4) Algorithm LINE-REL-3(DX,DY,DZ) the 3D relative line drawing routine

Arguments DX, DY, DZ displacement over which a line is to be drawn

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X DF-PEN-X + DX;

DE-PEN-Y DF-PEN-X + DY;

 DF-PEN-Z DF-PEN-X + DZ;

 DISPLAY-FILE-ENTER(2);

 RETURN;

END

(b) Explain:-

 i) Isometric Projection

 ii) Dimetric Projection

 iii) Trimetric Projection

 iv) Cavalier Projection

Ans:- Isometric Projection:- There is a particular direction of projection for which all edges

will appear shortened form there three dimensional length by the same factor. This special

direction is called an isometric projection.

Fig:- Isometric

projection shortens all

equally

Master of Computer Application Dept.

An isometric projection of a cube will show a corner of the cube in the middle of the image

surrounded by three identical faces. From the symmetry of the situation, we can see that the

commands needed for an isometric projection of an object with sides parallel to the axex are:

SET-PARALLEL (1,1,1);

SET-VIEW-PLANE-NORMAL(-1,-1,-1);

This projection will focus on the upper right-front corner of the object.

ii) Dimetric Projection:- If a viewing transformation is chosen such that edges parallel to only

two of the axes are equally shortened, then projection is called diametric projection.

Fig:- Dimetric projection shortens two axes equally.

iii) Trimetric Projection:- A trimetric projection is one in which none of the three edge

directions is equally shortened. There are no symmetries in the angles between the direction of

projection and the directions of the object edges.

Fig:- Trimetric projection shortens all axes differently.

iv) Cavalier Projection:- If the direction of parallel projection is not parallel to the view plane

normal, then we have what is called an oblique projection. We shall describe two special types of

oblique projections called cavalier projection and cabinet projection.

Master of Computer Application Dept.

 In a cavalier projection let us assume that we are viewing an object with edges parallel to

the coordinate axes. The view plane will be parallel to the front face. For a cavalier projection,

the direction of projection is slanted so that points with positive z coordinates will be projected

down and to the left on the view plane. Points with negative z coordinates will be projected up

and to the right. The angle of the projected z axis can be whatever we desire, but the distance the

point shifts in the projected z direction must equal the actual three-dimensional z distance from

the view plane. The projection command which will create a cavalier projection at angle A is

SET-PARALLEL (COS(A), SIN(S), 1);

FIG:- A cavalier projection.

Master of Computer Application Dept.

(c) Explain perspective projection in detail, also write an algorithm for perspective

projection of a point.

Ans:- In a perspective projection, the away an object is from the viewer, the smaller its appears.

This provides the viewer with a depth cue, an indication of which portions of the image

correspond to parts of the object which are close or far away. In a perspective projection, the

lines of projection are not parallel. They all converge at a single point called center of projection.

It is the intersection of these converging lines with the plane of the screen that determines the

projected image. The projection gives the image which would be seen if the viewer’s eye were

located at the center of projection. The lines of projection would correspond to the paths of the

light rays coming from the object to the eye.

Fig:- A perspective projection

If the center of projection is at (xc, yc, zc) and the point on the object is (x1, y1, z1), then the

projection ray will be the line containing these points and will be given by

x= xc + (x1 – xc)u

Master of Computer Application Dept.

y= yc + (y1 – yc)u

z= zc + (z1 – zc)u

the projected point (x2, y2) will be the point where this line intersects the xy plane. The third

equation tells us that u, for this intersection point (z=0), is

Substituting into the first two equations gives

With the little algebra, we can rewrite this as

This projection can be put into the form of a transformation matrix if we take full advantage of

the properties of homogeneous coordinates. The form of the matrix is

To show that this transformation works, consider the point (x1, y1, z1). In homogeneous

coordinates we would have

[x1 w1 y1 w1 z1 w1 w1]

Multiplying by the transformation matrix gives

Master of Computer Application Dept.

So

w2 =z1w1 – zcw1

And

Z2w2 = 0

Which gives

And

Y2w2 = - y1w1zc + z1w1yc

Which gives

The resulting point (x2, y2) is then indeed the correctly projected point.

Algorithm for perspective projection of a point

Algorithm PERSPECTIVE-TRANSFORM(X, Y, Z) For perspective transformation of a

point.

Arguments X, Y, Z the view plane coordinates of the point

Global XC, YC, ZC the conter of projection

Master of Computer Application Dept.

Local D the denominator in the calculations

Constant ROUNDOFF some small number greater that any round-off error

 VERY-LARGE a very large number approximating infinity

BEGIN

 D ZC – Z

 IF |D| < ROUNDOFF THEN

 BEGIN

 X (X – XC) * VERY-LARGE

 Y (Y – YC) * VERY-LARGE

 Z X VERY-LARGE

 END

 ELSE

 BEGIN

 X (X * ZC – XC * Z) / D;

 Y (Y * ZC – YC * Z) / D;

 Z Z / D;

END

RETURN;

END;

Master of Computer Application Dept.

3. (A) What is projection? Explain special projection with suitable example.

Ans:- we have talked about creating and transforming three-dimensional objects, but since

our viewing surface is only two-dimensional, we must some way of projecting our three-

dimensional object onto the two dimensional screen.

Special Projection

Isometric Projection:- There is a particular direction of projection for which all edges will

appear shortened form there three dimensional length by the same factor. This special direction is

called an isometric projection.

Fig:- Isometric

projection shortens all

equally

An isometric projection of a cube will show a corner of the cube in the middle of the image

surrounded by three identical faces. From the symmetry of the situation, we can see that the

commands needed for an isometric projection of an object with sides parallel to the axex are:

SET-PARALLEL (1,1,1);

SET-VIEW-PLANE-NORMAL(-1,-1,-1);

This projection will focus on the upper right-front corner of the object.

ii) Dimetric Projection:- If a viewing transformation is chosen such that edges parallel to only

two of the axes are equally shortened, then projection is called diametric projection.

Fig:- Dimetric projection shortens two axes equally.

Master of Computer Application Dept.

iii) Trimetric Projection:- A trimetric projection is one in which none of the three edge

directions is equally shortened. There are no symmetries in the angles between the direction of

projection and the directions of the object edges.

Fig:- Trimetric projection shortens all axes differently.

iv) Cavalier Projection:- If the direction of parallel projection is not parallel to the view plane

normal, then we have what is called an oblique projection. We shall describe two special types of

oblique projections called cavalier projection and cabinet projection.

 In a cavalier projection let us assume that we are viewing an object with edges parallel to

the coordinate axes. The view plane will be parallel to the front face. For a cavalier projection,

the direction of projection is slanted so that points with positive z coordinates will be projected

down and to the left on the view plane. Points with negative z coordinates will be projected up

and to the right. The angle of the projected z axis can be whatever we desire, but the distance the

point shifts in the projected z direction must equal the actual three-dimensional z distance from

the view plane. The projection command which will create a cavalier projection at angle A is

SET-PARALLEL (COS(A), SIN(S), 1);

FIG:- A cavalier projection.

Master of Computer Application Dept.

(B) Write an algorithm for BACK-FACE-CHECK (Polysize).

Ans:- The algorithm BACK-FACE-CHECK function to actually decide whether the polygon is a

back face and enters it into the display file. It computes the z component of the vector normal to

the polygon according to equation

Algorithm BACK-FACE-CHECK (POLYSIZE) Filters out polygon drawn clockwise

Arguments POLYSIZE the number of sides on the polygon

Global XT, YT, ZT T- buffer array storage of the vertex points

Local C z component of a vector for the normal to the plane of the polygon

 I, J for stepping through the vertices

BEGIN

 C <- 0

 FOR I =1 TO POLYSOZE DO

 BEGIN

 IF I = POLYSOZE THEN J <- 1

 ELSE J <- I +1

 C <- C + ((XT[I] – XT[J]) * (YT[I] + YT[J]))

 END

 IF C<= 0 THEN RETURN;

 VIEWING-TRANSFORM (POLYSOZE, XT[POLYSIZE], YT[POLYSIZE]);

 FOR I = 0 TO POLYSIZE DO VIEWING-TRANSFORM(IT[I], XT[I], YT[I]);

 RETURN

Master of Computer Application Dept.

END

Master of Computer Application Dept.

(C) Explain BACK-FACE-REMOVAL in detail.

Ans:- One of the simplest and commonly used image space approach to eliminate hidden

surfaces is the Z-buffer or Depth Buffer algorithm. It is developed by Catmull. This algorithm

compares surface depths at each pixel position on the on the projection plane. The surface depth

is measured from the view plane along the z axis of a viewing system. When object description is

converted to projection coordinates (x,y,z) each pixel position on the view plane is specified by x

and y coordinate and z value gives the depth information. Thus object depths can be compared

by comparing the z-values.

The Z-buffer algorithm is usually implemented in the normalized coordinates, so that z values

range from at the back clipping plane to at the front clipping plane. The implementation requires

another buffer memory called Z-buffer along with the frame buffer memory required for raster

display devices. A Z-buffer is used to store depth values for each (x,y) position as surfaces are

proceeds and the frame buffer stores the memory values for each position.

If the calculated depth values is greater than the value stored in the Z-buffer, the new depth value

is stored, and the surfaced intensity at that position is determined and placed in the same xy

location in the frame buffer

For Example, among three surfaces, surface S1S1 has the smallest depth at view position (x,y)

and hence highest z value. So it is visible at that position.

(D) Explain rotation about an arbitrary axis in detail.

Ans:- Rotation About An Arbitrary Axis

 A rotation matrix for any axis that does not coincide with a coordinate axis can be set up

as a composite transformation involving combination of translation and the coordinate-axes

rotation.

Master of Computer Application Dept.

 In a special case where an object is to be rotated about an axis that is parallel to one of

the coordinate axes we can obtain the resultant coordinates with the following transformation

sequence.

1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.

2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original position.

When an object is to be rotated about an axis that is not parallel to one of the coordinate

axes, we have to perform some additional transformations. The sequence of these

transformations is given below:

1. Translate the object so that rotation axis specified by unit vector u passes through the

coordinate origin. (See fig.)

2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.

To coincide the axis of rotation of z axis we have to first perform rotation of unit vector

u about x axis to bring it into xz plane and then perform rotation about y axis to coincide

it with z axis (See fig.)

3. Perform the desired rotation 0 about the z axis.

4. Apply the inverse rotation about y axis and then about x axis t bring the rotation axis

back to its original orientation.

5. Apply the inverse translation to move the rotation axis back to its original position.

Master of Computer Application Dept.

As shown in the above fig. the rotation axis is defined with two coordinate points P1 and point

P2 and unit vector u is defined along the rotation of axis as

Where V is the axis vector defined by two points P1 and P2 as

 The components a, b, c of unit vector u are the direction cosines for the rotation axis and

they can be defined as

 As mention earlier, the first step in the transformation sequence is to translate the object

to pass the rotation axis through the coordinate origin. This can be accomplished by moving

point P1 to the origin. The translate is as given below

 Now we have to perform the rotation of unit vector u about x axis. The rotation of u

around the x axis into the xz plane is accomplished by rotating u’ (0, b, c) through angle α into

the z axis and the cosine of the rotation angle α can be determined from the dot product of u’ and

the unit vector uz (0,0,1) along the z axis.

Master of Computer Application Dept.

Where d is the magnitude of u’:

Similarly, we can determine the sine of α from the cross product of u’ and uz

And the Cartesian form for the cross product given us

Equating the right sides of equations we get

This can also be verified graphically as shown in fig.

Master of Computer Application Dept.

By substituting values of cos α and sin α the rotation matrix R, can be given as

 Next we have to perform the rotation of unit vector about y axis. This can be achieved by

rotating u’’(a,0,d) through angle β onto the z axis. Using similar equations we can determine

cosβ and sin β as follows.

 We have angle of rotation = - β

Consider cross product of u’’ and uz

Cartesian form of cross product gives us

Equating above equations,

Master of Computer Application Dept.

By substituting values of cos β and sin β in the rotation matrix Ry can be given as

Master of Computer Application Dept.

Inverse of translation matrix can be given as

 With transformation matrices T and Rxy we can align the rotation axis with the positive z

axis. Now the specified rotation with angle θ can be achieved by rotation transformation as given

below

Master of Computer Application Dept.

 To complete the required rotation about the given axis, we have to transform the rotation

axis back to its original position. This can be achieved by applying the inverse transformations T-

1 and Rxy
-1 . The overall transformation matrix for rotation about an arbitrary axis then can be

expressed as the concatenation of five individual transformations.

Q3. (a) What do you mean by projection? Explain parallel projection in detail with

example.

Ans:- we have talked about creating and transforming three-dimensional objects, but since our

viewing surface is only two-dimensional, we must some way of projecting our three-dimensional

object onto the two dimensional screen.

Master of Computer Application Dept.

Fig:- A three – dimensional object and its projection.

Parallel Projection : The simplest way of doing this is just to discard the z coordinate. This is a

special case of a method known as parallel projection. A parallel projection is formed by

extending parallel lines from each vertex on the object until they intersect the plane of the screen.

The point of intersection is the projection of the vertex. We connect the projected vertices by line

segments which correspond to connections on the original object.

 Fig:- A parallel projection

In a general parallel projection, we may select any direction for the lines of projection. Suppose

that the direction of projection is given by the vector [xp yp zp] and that the image is to be

projected onto the xy plane. If we have a point on the object at (x1,y1,z1), we wish to determine

where the projected point (x2,y2) will lie. Let us begin by writing the equations for a line passing

Master of Computer Application Dept.

through the point (x,y,z) and in the direction of projection. This is easy to do using the parametric

form.

X = x1 + xpu

y = y1 + ypu

z =z1 +zpu

If z is 0, the thirs equation tell us that the parameter u is

 u = - z1 / zp

substituting this into the first two equations gives

x2 = x1 - z1 (xp/zp)

y2 = y1 - z1 (yp/zp)

This projection formula is in fact a transformation which may be written in matrix form

 [x2 y2] = [x1 y1 z1]

Or in full homogeneous coordinates

[x2 y2 z2 1] = [x1 y1 z1]

This transformation always gives 0 for z2, the position fo the view plane, but it is often useful to

maintain the z information. A transformation that includes determining a z-coordinate value z2 is

as follows:

[x2 y2 z2 1] = [x1 y1 z1]

We will just ignore the z value when drawing the projected image.

Master of Computer Application Dept.

(b) Write and explain painters algorithm.

Ans:- The painters algorithm gets its name from the manner in which an oil painting is created.

The artist begin with the background scene. He can, if he wishes fill the entire canvas with the

background scene. The artist then paints the foreground objects. There is no need to erase portion

of the background; the artist simply paints on top of them. The new paint covers the old so that

only the newest layer of paint is visible. A frame buffer has this same property. We enter a filled

polygon into the frame buffer by changing the proper pixel to values corresponding to the

polygon’s interior style. If we then enter a second polygon “on top of” the first, some of that

same pixel will be changed to correspond to the second polygon interior style. Wherever the

second polygon lies, the first polygon’s pixel setting have been forgotten. The second polygon

has covers up the first. The painters algorithm tell us to enter first those polygon which are

farthest from the viewer and enter last the objects closet to the viewer. Hidden surface can be

covered up by choosing the correct order to draw them and taking advantage of the properties of

frame buffer.

Master of Computer Application Dept.

Fig:- The most recent filled polygon overwrites previous pixel values.

(c) Discuss any three 3D primitives.

Ans:- 3D primitives is as follows algorithms

1) Algorithm MOVE-ABS-3(X,Y,Z) the 3D absolute move

Arguments X,Y,Z world coordinates of the point to move the pen to

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X X;

DE-PEN-Y Y;

 DF-PEN-Z Z;

 DISPLAY-FILE-ENTER(1);

 RETURN;

END

2) Algorithm MOVE-REL-3(DX,DY,DZ) the 3D relative move

Arguments DX, DY, DZ change to be made to the pen position

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X DF-PEN-X + DX;

DE-PEN-Y DF-PEN-X + DY;

 DF-PEN-Z DF-PEN-X + DZ;

 DISPLAY-FILE-ENTER(1);

 RETURN;

END

3) Algorithm LINE-ABS-3(X,Y,Z) the 3D absolute line drawing routine

Arguments X,Y,Z world coordinates of the point to draw the line to

Global DF-PEN-X, DE-PEN-Y, DF-PEN-Z current pen position

Begin

 DF-PEN-X X;

Master of Computer Application Dept.

DE-PEN-Y Y;

 DF-PEN-Z Z;

 DISPLAY-FILE-ENTER(2);

 RETURN;

END

(D) How is conversion to view plane coordinates achieved? Write an algorithm for Make –

View – Plane – Transformation.

Ans:- Conversion To View Plane Coordinates Achieved :The user enters the description of the

object in terms of the object coordinates. But our particular point of view corresponds to

expressing the object in the view plane coordinates. The process of generating a particular view

of the object is one of transforming form one coordinate system to another. The steps to be taken

are the same as those which were used for a rotation about an arbitrary axis. The first step is a

translation to move the origin to the correct position for the view plane coordinates system. This

is a shift first to the view reference point, and then along the view plane normal by the VIEW-

DISTANCE . After the origin is place, we align the Z axis. In the rotation problem, we saw how

to rotate a line onto the z axis. the line to be the object coordinates z axis, and we shall rotate it

into he view plane coordinates z axis. This is done in two steps. First, a rotation about the x asis

place the line in the view plane coordinates xz plane. The entire transformation sequence is given

by:

TMATRIX = TRXRYRZ

Where

Master of Computer Application Dept.

And

V = (DNY2 + DZN2)1/2

Also

And

Where

[XUP-VP YUP-VP Z 1] = [DXUP DYUP DZUP 1] RxRy

And RUP = (XUP-VP2 + YUP-VP2)1/2

Algorithm for Make – View – Plane – Transformation

Algorithm Make – View – Plane – Transformation for making the viewing transformation

Global XR,YR,ZR the view reference point

 DXN,DYN,DZN the view plane normal

Master of Computer Application Dept.

 DXUP,DYUP,DZUP the view-up direction

 TMATRIX a 4 X 3 transformation matrix array

 PERSPECTIVE-FLAG the perspective projection flag

 VIEW-DISTANCE distance between view reference point and view plane

Local V,XUP-VP,YUP-VP,RUP for storage of partial results

Constant ROUNDOFF some small number greater than any round-of error.

Begin

 Start with the identity matrix

 NEW-TRANSFORM-3;

 Translate so that view plane center is new origin

TRANSLATE-3(-(XR+DXN*VIEW-DISTANCE), -(YR + DYN * VIEW-DISTANCE),

-(ZR + DZN * VIEW-DISTANCE)

 Rotate so that view plane normal is z axis

 V SQRT(DYN 2 + DZN 2);

 IF V > ROUNDOFF THEN ROTATE – X-3 (- DYN /V, - DZN /V);

 ROTATE-Y-3(DXN, V)

 Determine the view-up direction in these new coordinates

XUP-VP DXUP* TMATRIX [1, 1] + DYUP* TMATRIX [2, 1] + DZUP *

TMATRIX [3, 1]

YUP-VP DXUP* TMATRIX [1, 2] + DYUP* TMATRIX [2, 2] + DZUP *

TMATRIX [3, 2]

Determine rotation needed to make view-up vertical

RUP SQRT(XUP-VP 2 + YUP-VP 2);

If rup < roundoff then

Master of Computer Application Dept.

 RETURN ERROR ‘SET-VIEW-UP- ALONG VIEW PLANE NORMAL’;

ROTATE-Z-3(XUP-VP / RUP, YUP-VP / RUP);

IF PERSPECTIVE-FLAG THEN MAKE-PERSPECTIVE-TRANSFORMATION

ELSE MAKE-PARALLEL-TRANSFORMATION;

REUTN;

END

Master of Computer Application Dept.

UNIT - IV

Q4. (a) Give short notes on transparency, reflection and shadows

Ans:- Transparency:- In the shading models we have not considered the transparent objects. A

transparent surface, in general, produces both reflected and transmitted light. It has a

transparency coefficient T as well as values for reflectivity and specular reflection. The

coefficient of transparency depends on the thickness of the object because the transmission of

light depends exponentially on the distance which the light ray must travel within the object. The

expression for coefficient of transparency is given as

T = te – ad

Where t is the coefficient of property of material which determines how much of the light is

transmitted at the surface instead of reflected, a is the coefficient of property of material which

tells how quickly the material absorbs or attenuates the light, d is the distance the light must

travel in the object.

When light crosses the boundaries between two media it changes the direction as shown in fig.

Fig:- Refraction

This effect is called refraction. The effect of refraction is observed because the speed of light is

different in different material resulting different path for refracted light from that of incident

light. The direction of the refracted light is specified by the angle of refraction (Ɵr). It is the

function of the property materials called the index of refraction (n). The angle of refraction Ɵr is

Master of Computer Application Dept.

calculated from the angle of incident Ɵi , the index of refraction ni of the incident material, and

the index of refraction nr of the refracting material according to snell’ law:

The transparency and absorption coefficient are also depend on colour. Therefore, when we are

dealing with colour objects we require three pairs of transparency and absorption coefficients.

Fig:- Refraction

For modelling of transparent surface we have to consider contribution from the light reflected

from the surface and the light coming from behind the object. If we assume for a given surface

that

i. The transparency coefficient for the object is a constant

ii. Refraction effects are negligible and

iii. No light source can be seen directly through the object,

Then the light coming through the object is given as,

v = vr + t v1

where v is the total amount of light

vr is the amount of light reflected from the surface,

t is the transparency coefficient and,

vt is the light coming from behind the object.

Master of Computer Application Dept.

To get more realistic images we have to consider the angular behaviour of the reflection vs

transmission at the surface and also the attenuation due to thickness. The simple approximation

for this behaviour can be given as

t = (tmax – tmin) (N.E)α + tmin

Therefore, we can say that cosine of angle is maximum when surface is viewed straight on and it

drops off for glancing views. The power of angle represented by α enhance the effect.

Reflection: - The effect of light coming directly from illumination sources, but in a realistic

scene, every object can act as a light source. We should be able to see the specular reflections of

objects, not just of lights. We look at a points p1 on a object and ask what light is coming from

that point and from where does it originate. We have seen how to find the light coming from

diffuse illumination and directly from point sources. We can also follow a reflected ray back

from our eye to the point and determine the incident ray. If we move back along the incident ray

and reach a point p2 on some other surface, then we know that light (I) from this second point

will be reflected at p1. (see fig)

This will add a term to equation for the contribution of p2 of the form

Where F’ is calculated according to equation just f, and only c used in this calculation is given by

C = E . N

The light (I) for the point p2 should be calculated as if located at p1. For such calculations, all

surfaces must be considered, even back faces.

Shadow:- A shadowed object is one which is hidden from the light source. It is possible to use

hidden surface algorithms to locate the areas where light sources produce shadows. In order to

achieve this we have to repeat the hidden surface calculation using light source as the viewpoint.

This calculation divides the surface into shadowed and unshadowed groups. The surface that are

visible from the light source are not in shadow; those that are not visible from the light source are

in shadow. Surface which are visible and which are also visible from the light source are shown

with both background illumination and the light-source illumination. Surfaces which are visible

Master of Computer Application Dept.

but which are hidden form the light source are displayed with only the background illumination

as shown in fig.

 Fig:- Shadow

(B) Write an algorithm BEZIER_ABS_3 to adds a Bezier curve section to display file.

Ans:- Algorithm for adding Bezier curves to our system are given below. They assume that the

first control point is at the current pen position, so only three additional points must be specified.

They use the recursive subdivision approach.

Algorithm BEZIER-ABS-3(XB, YB, ZB, XC, YC, ZC, XD, YD, ZD, N) Adds a Bezier curve

section to the display file.

Arguments XB, YB, ZB, XC, YC, ZC, XD, YD, ZD control points

 N the desired degree of subdivision

Global DF-PEN-X, DE-PEN-Y, DE-PEN-Z the current pen position

Local XAB, YAB, ZAB, XBC, YBC, ZBC, XCD, YDC, ZCD first level mid points

 XABC, YABC, ZABC, XBCD, YBCD, ZBCD second level midpoints

 XABCS, YABCD, ZABCD THIRS LEVEL MIDPOINT

BEGIN

 IF N=0 THEN

 LINE – ABS-3(XB, YB, ZB);

 LINE – ABS-3(XC, YC, ZC);

 LINE – ABS-3(XD, YD, ZD);

 END;

ELSE

Master of Computer Application Dept.

 BEGIN

 XAB (DF-PEN-X + XB) / 2;

 YAB (DF-PEN-Y + YB) / 2;

 ZAB (DF-PEN-Z + ZB) / 2;

 XBC (XB+ XC) / 2;

 YBC (YB+ YC) / 2;

 ZBC (ZB+ ZC) / 2;

 XCD (XC+ XD) / 2;

 YCD (YC+ YD) / 2;

 ZCD (ZC+ ZD) / 2;

 XABC (XAB+ XBC) / 2;

 YABC (YAB+ YBC) / 2;

 ZABC (ZAB+ ZBC) / 2;

 XBCD (XBC+ XCD) / 2;

 YBCD (YBC+ YCD) / 2;

 ZBCD (ZBC+ ZCD) / 2;

 XABCD (XABC+ XBCD) / 2;

 YABCD (YABC+ YBCD) / 2;

 ZABCD (ZABC+ ZBCD) / 2;

 BEZIER-ABS-3(XAB, YAB, ZAB, XABC, YABC, ZABC, XABCS, YABCS, ZABCS,

N -1);

 BEZIER-ABS-3(XBCD, YBCD, ZBCD, XCD, YCD, ZCD, XD, YD, ZD, N – 1);

Master of Computer Application Dept.

 END;

RETURN;

END;

(C) Explain the following: -

 (i) Diffuse Illumination

 (ii) Point source illumination

Ans:- (i) Diffuse Illumination:-

(ii) Point Source Illumination:-Point source are abstraction of real-world sources of light such

as light bulbs, candles, or the sun. The light originates at a particular place, it comes from a

particular direction over a particular distance. For point source, the position and orientation of the

objects surface relative to the light source will determine how much light the surface will receive

and in turn how bright it will appear. Surfaces facing toward and positioned near the light source

will receive more light than those facing away from or far removed from the illumination. Let us

begin by considering the effects of orientation. By arguments similar to those we made earlier,

we can see that as a face is turned away from the light source, the surface area on which a fixed-

sized beam of light falls increases. This means that there is less light for each surface point. The

surface is less brightly illuminated (see fig.).

Master of Computer Application Dept.

The illumination is decreased by a factor of COS I, where I is the angle between the direction of

the light and the direction normal to the plane. The angle I is called the angle of incidence (see

fig.)

Fig.:- The angle of incidence

If we have a vector of length 1 called L pointing towards the light source and a vector of length 1

called N in the direction normal to the surface, then the vector dot product gives

COS I = L . N

Suppose that P amount of light comes from the point source. Then the shade of a surface of an

object will be given by

Master of Computer Application Dept.

V = BR + PR(L . N)

Q4 (A) Explain B-spline curves generation in detail.

Ans:-

(B) Discuss:

(i) Diffused illustration.

(ii) Point source illustration.

Ans:- (i) Diffuse Illumination:- An object illumination is as important as its surface

properties in computing its intensity. The object may be illuminated by light which does not

come from any particular source but which comes from all directions. When such illumination is

uniform from all directions, the illumination is called diffuse illumination. Usually, diffuse

illumination is a background light which is reflected form walls, floor, and ceiling.

 When we assume that going up, down, right and left is of same amount then we can say

that the reflections are constant over each surface of the object and they are independent of the

viewing direction. Such a reflection is called diffuse reflection. In practice, when object is

illuminated, some part of light reflected from the surface of the object, while the reset is

reflected. The ratio of the light reflected from the surface to the total incoming light to the

surface is called coefficient of reflection or the reflectivity. It is denoted by R. The value of R

varies from 0 to 1. It is closer to 1 for white surface and closer to 0 for black surface. This is

because white surface reflects nearly all incident light whereas black surface absorbs most of the

incident light. Reflection coefficient for gray shades is in between 0 to 1.

(ii) Point Source Illumination:-Point source are abstraction of real-world sources of light such

as light bulbs, candles, or the sun. The light originates at a particular place, it comes from a

particular direction over a particular distance. For point source, the position and orientation of the

objects surface relative to the light source will determine how much light the surface will receive

and in turn how bright it will appear. Surfaces facing toward and positioned near the light source

will receive more light than those facing away from or far removed from the illumination. Let us

begin by considering the effects of orientation. By arguments similar to those we made earlier,

we can see that as a face is turned away from the light source, the surface area on which a fixed-

sized beam of light falls increases. This means that there is less light for each surface point. The

surface is less brightly illuminated (see fig.).

Master of Computer Application Dept.

The illumination is decreased by a factor of COS I, where I is the angle between the direction of

the light and the direction normal to the plane. The angle I is called the angle of incidence (see

fig.)

Fig.:- The angle of incidence

If we have a vector of length 1 called L pointing towards the light source and a vector of length 1

called N in the direction normal to the surface, then the vector dot product gives

COS I = L . N

Suppose that P amount of light comes from the point source. Then the shade of a surface of an

object will be given by

Master of Computer Application Dept.

V = BR + PR(L . N)

(C) Write short notes on :

(i) Transparency

(ii) Shadows

Ans:- (i) Transparency :- In the shading models we have not considered the transparent

objects. A transparent surface in general, produces both reflected and transmitted light. It has

a transparency coefficient T as well as values for reflectivity and specular reflection. The

coefficient of transparency depends on the thickness of the object because the transmission

of light depends exponentially on the distance which the light ray must travel within the

object. The expression for coefficient of transparency is given as

T = te-ad

 Where t is the coefficient of property of material which determines how much of the

light is transmitted at the surface instead of reflected, a is the coefficient of property of

material which tells how quickly the material absorbs or attenuates the light, d is the distance

the light must travel in the object.

Fig:- Reflection

 When light crosses the boundary between two media it changes the direction as

shown in the fig. This effect is called refraction. The effect of refraction is observed because

the speed of light is different in different materials resulting different path for refracted light

Master of Computer Application Dept.

from that incident light. The direction of the refracted light is specified by angle of refraction

(θr). It is the function of the property materials called the index of refraction (n). The angle

of refraction θr is calculated from the angle of incidence θi , the index of refraction ni of the

incident material (usually air), and the index of refraction nr of the refracting material

according to Snell’s law:

 In practice, the index of refraction of a material is a function of the wave length of

the incident light, so that the different color components of a light ray refracts at different

angles. The transparency and absorption coefficients are also depend on color. Therefore,

when we are dealing with color objects we require three pairs of transparency and absorption

coefficients.

(ii) Shadow: A shdowed abject is one which is hidden from the light source. It is possible to use

hidden surface algorithms to locate the areas where light sources produce shadows. In order to

achieve this we have to repeat the hidden-surface calculation using light source as the viewpoint.

This calculation divides the surfaces into shadowed and unshadowed groups. The surfaces that

are visible from the light source are not in shadow; those that are not visible from the light source

are in shadow. Surfaces which are visible and which are also visible from the light source are

shown with both the background illumination and the light-source illumination. Surfaces which

are visible but which are hidden from the light source are displayed with only the background

illumination, as shown in fig.1.

Fig 1: Shadow

Master of Computer Application Dept.

Another way to locate shadow areas is the use of shadow volumes. A shadow volume is define

by a set of invisible shadow polygons as shown in fig.2 This volume is also known as polygon’s

shadow volume. By comparing visible polygon with this volume we can identify the portions

which lie inside of the volume and which are outside of the volume. The portions which lie

inside of the volume are shadowed, and their intensity calculations do not include a term from

the light source. The polygon or portion of polygon which lie outside the shadow volume are not

shaded by this polygon, but might be

Fig 2

shaded by some other polygon so they still must be shaded by some other polygon so they still

must be checked against the other shadow volume.

(D) Explain Specular Reflection.

Ans:- Specular Reflection:- When we illuminate a shiny surface such as polished metal or

an apple with a bright light, we observe highlight or bright spot on the shiny surface. This

phenomenon of reflection of incident light in a concentrated region around the specular

reflection angle is called specular reflection. Due to specular reflection, at the highlight, the

surface appears to be not in its original color, but white, the color of incident light.

Master of Computer Application Dept.

Fig. Specular Reflection

The fig shows the specular reflection direction at a point on the illuminated surface. The

specular reflection angle equals the angle of the incident light, with the two angles measured

on opposite sides of the unit normal surface vector N. As shown in the fig2. R is the unit

vector in the direction of ideal specular reflection, L is the unit vector directed towards the

point light source and V is the unit vector pointing to the viewer from the surface position.

Fig2: Specular Reflection

 The angle ϕ between vector R and vector V is called viewing angle. For an ideal

reflector, incident light is reflected only in the specular reflection direction. In such case, we

can see reflected light only when vector V and R coincide i.e. ϕ = 0.

Q4 (a) Write a note on Point source illumination.

Ans:- Point source are abstraction of real-world sources of light such as light bulbs, candles, or

the sun. The light originates at a particular place, it comes from a particular direction over a

particular distance. For point source, the position and orientation of the objects surface relative to

the light source will determine how much light the surface will receive and in turn how bright it

will appear. Surfaces facing toward and positioned near the light source will receive more light

than those facing away from or far removed from the illumination. Let us begin by considering

the effects of orientation. By arguments similar to those we made earlier, we can see that as a

Master of Computer Application Dept.

face is turned away from the light source, the surface area on which a fixed-sized beam of light

falls increases. This means that there is less light for each surface point. The surface is less

brightly illuminated (see fig.).

The illumination is decreased by a factor of COS I, where I is the angle between the direction of

the light and the direction normal to the plane. The angle I is called the angle of incidence (see

fig.)

Fig.:- The angle of incidence

If we have a vector of length 1 called L pointing towards the light source and a vector of length 1

called N in the direction normal to the surface, then the vector dot product gives

Master of Computer Application Dept.

COS I = L . N

Suppose that P amount of light comes from the point source. Then the shade of a surface of an

object will be given by

V = BR + PR(L . N)

(b) what is polygon interpolation? Write an algorithm for polygon smoothing?

Ans:- Polygon Interpolation :- The sides of a polygon can also be rounded by means of our

blending function. In fact, a polygon is conceptually easier to deal with, since no special initial or

final section occurs. We just step around the polygon, smoothing out each side by replacing it

with several small line segments. We start out with a polygon that has only a few sides and end

up with a polygon which has many more sides and appears smoother.

Fig:- Smoothing of a polygon

Algorithm for polygon Smoothing

Algorithm Smooth-Poly-Abs-3(Ax, Ay, Az, M) User routine to draw a smoothed polygon

Arguments AX, AY, AZ arrays containing vertices of original polygon

 M the original number of polygon sides

Global BLEND the array of blending function values

 LINE-PER-SECTION the number of line segments per original polygon side

Master of Computer Application Dept.

Local BX, BY, BZ arrays to hold smothed polygon sertices

 NSIDES number of sides for the smoothed polygon

 J index variable for saving the smoothed polygon sides

 K to step thorough the small segments for each polygon side

 I, I1 variables for stepping through the four sample points

 L for stepping through the four blending functions

BEGIN

 IF M<3 THEN RETURN ERROR ‘POLYGON SIZE ERROE’;

 NSIDES LINES-PER-SECTION * M;

IF LINES-PER-SECTION = 1 THEN POLYGON-ABS-3(AX, AY, AZ, M)

ELSE

BEGIN

J 1

 FOR I1 = 1 TO M DO

Smooth all sides

FOR K = 1 TO LINE-PER-SECTION DO

Smooth a side of the original polygon

BEGIN

BX[J] 0;

BY[J] 0;

BZ[J] 0

I I1;

FOR L = 1 TO 4 DO

Master of Computer Application Dept.

One side of the smooth polygon

BEGIN

BX[J] BX[J] + AX[I] * BLEND [L, K]

BY[J] BY[J] + AY[I] * BLEND [L, K]

BZ[J] BZ[J] + AZ[I] * BLEND [L, K]

END

 J] J +1;

 END;

Draw the result

POLYGON-ABS-3(BX,BY,BZ,NSIDES);

END

RETURN

END;

(C) Explain Specular reflection in detail.

ANS:- When we illuminate a shiny surface such as polished metal or an apple with a bright

light, we observe highlight or bright spot on the shiny surface. This phenomenon of reflection of

incident light in a concentrated region around the specular reflection angle is called specular

reflection. Due to specular reflection, at the highlight, the surface appears to be not in its original

colour, but white, the colour of incident light.

Master of Computer Application Dept.

Fig:- Specular Reflection

 The fig shows the specular reflection direction at a point on the illuminated surface. The

specular reflection angle equals the angle of the incident light, with the two angles measured on

opposite sides of the unit normal surface vector N. As shown in the fig, R is the unit vector in the

direction of ideal specular reflection, L is the unit vector directed toward the point light source

and V is the unit vector pointing to the viewer form the surface position.

 The angle ɸ between vector R and vector V is called viewing angle. For an ideal reflector

(perfect mirror), incident light is reflected only in the specular reflection direction. In such case,

er can see reflected light only when vector V and R coincide, i.e. ɸ = 0.

(d) Write and Explain an algorithm for counter clock wise circular arc generation.

Ans:- Circular arc generation: - Digital differential analyzer algorithm uses the differential

equation of the curve. The differential equations for simple curve such as circle is fairly easy to

solve. Let us see the DDA algorithm for generating circular arcs. The equation for an arc in the

angle parameters can be gives as

X = R cosƟ + x0

Y = R sinƟ + y0

Where (x0,y0) is the center of curvature, and R is the radius of arc.

Differentiaitng equation, we get

Dx = -R sinƟ dƟ

Dy = R cosƟ dƟ

From above equation we can solve for R cosƟ and R sin Ɵ as follows.

Master of Computer Application Dept.

X = R cosƟ + x0

R cosƟ = x – x0 and

R sin Ɵ = y – y0

Substituting values of R cosƟ and R sin Ɵ from equation we get,

Dx = -(y – y0) dƟ

Dy = (x – x0) dƟ

The values of dx and dy indicates the increment in x and y increment, respectively, to be added

in the current point on the arc to get the next point on the arc. Therefore, we can write

X2 =x1 + dx = x1 – (y1 – y0) dƟ

y2 =y1 + dy =y1 – (x2 – x0) dƟ

the above equation is the basic for arc generation.

Algorithm for counter clock wise circular arc generation.

Algorithm ARCDDA(X0, Y0, A, X, Y, INTENSITY) counter clock wise circular arc

generation

Arguments X0, Y0 the center of curvature

 A the arc angle

 X, Y the starting point for the arc drawing

Global FRAME the frame buffer array

Local XARC, YARC the next point to draw

 A-DRAWN the amount of angle currently coveres

 DA the angle increment

Constant ROUNDOFF some small number greater than any round-of error

Master of Computer Application Dept.

BEGIN

 IF | X – X0| + |Y – Y0| < ROUNDOFF THEN RETURN

 A-DRAWN 0;

 Find a suitable angle increment

 DA MIN(0.01 / (3.2 *(| X – X0| + |Y – Y0|)));

 Set the first point of the arc

 XARC X;

 YARC Y;

 Generating the arc until desired angle is covered

 WHILE A=DRAWN < A DO

 BEGIN

 Find new point

 XARC XARC + (Y0 – YARC) * DA;

 YARC YARC + (XARC – X0) *DA;

 A-DRAWN A-DRAWN + DA;

 Set the corresponding pixel

 FRAME[INT(XARC), INT (YARC)] INTENSITY;

 END;

RETURN;

END;

Master of Computer Application Dept.

UNIT - V

Q5 (a) Explain Area – subdivision method in detail

ANS:- Area – subdivision method:- An interesting approach to the hidden-surface problem

was developed by Warnock. He developed area subdivision algorithm which subdivides each

area into four equal squares. At each stage in the recursive- subdivision process, the relationship

between projection of each polygon and the area of interest is checked for four possible

relationships:

1. Surrounding Polygon – one that completely encloses the (shaded) area of interest (se fig

(a))

2. Overlapping or Interesting Polygon – one that is partly inside and partly outside the area

(see fig b)

3. Inside or Contained Polygon – one that is completely inside the area (see fig c)

4. Outside or Disjoint Polygon – one that is completely outside the area (see fig d)

Fig:- Possible relationships with polygon surfaces and the area of interest

After checking four relationships we can handle each relationship as follows:

1. If all the polygons are disjoint from the area, then the background colour is displayed in

the area.

2. If there is only one interesting or only one contained polygon, then the area is first filled

with the background colour, and then the part of the polygon contained in the area is

filled with colour of polygon.

3. If there is a single surrounding polygon, but no intersecting or contained polygons, then

the area is filled with the colour of the surrounding polygon.

Master of Computer Application Dept.

4. If there are more than one polygon intersections of surrounding polygon are all closer to

the viewpoint that any of the other intersections. Therefore, the entire area is filled with

the colour of the surrounding polygon.

(b) Explain scan – line method for visible surface detection.

Ans:- Scan – Line Method For Visible Surface Detection:- A scan line method of hidden

surface removal is an another approach of image space method. If is an extension of the scan line

algorithm for filling polygon interiors. Here, the algorithm deals with more than one surfaces. As

each scan line is processed, it examines all polygon surfaces intersecting that line to determine

which are visible. It then does the depth calculation and finds which polygon is nearest to the

view plane. Finally, it enters the intensity value of the nearest polygon at that position into the

frame buffer.

 We know that scan line algorithm maintains the active edge list. This active edge list

contains only edges that cross the current scan line, sorted in order of increasing x. The scan line

method of hidden surface removal also stores a flag for each surface that is set on or off to

indicate whether a position along a scan line is inside or outside of the surface. Scan lines are

processed from left to right. At the leftmost boundary of a surface, the surface flag is turned ON

and at the rightmost boundary, it is turned OFF.

Fig:- Illustration of scan line method

The fig illustrates the scan line method for hidden surface removal. As shown in fig the active

edge list for scan line 1 contains the information for edges AD, BC, EH and FG. For the position

along this scan line between edges AD and BC, only the flag for surface S1 is ON. Therefore, no

Master of Computer Application Dept.

depth calculations are necessary, and intensity information for surface s1 is entered into the frame

buffer. Similarly, between edges EH and FG, only the flag for surface S2 is ON and during that

portion of scan line the intensity information for surface S2 is entered into the frame buffer.

For scan line 2 in the fig, the active edge list contains edges AD, EH, EC and FG. Along the scan

line 2 from edge AD to edge EH, only the flag surface S1 is ON. However, between edges EH

and BC, the flags for both surface are ON. In this portion of scan line 2, the dept calculations are

necessary. Here we have assumed that the depth of s1 is less than the depth s2 and hence the

intensities of surface S1 are loaded into the frame buffer. Then, for edge BC to edge FG portion

of scan line 2 intensities of surface S2 are entered into the frame buffer because during that

portion only for s2 is ON.

5. (A) Explain :

(i) A-Buffer method

(ii) Depth Buffer method.

Ans:- A- Buffer Method:-

A-Buffer method in computer graphics is a general hidden face detection mechanism suited to

medium scale virtual memory computers. This method is also known as anti-aliased or area-

averaged or accumulation buffer. This method extends the algorithm of depth-buffer (or Z

Buffer) method. As the depth buffer method can only be used for opaque object but not for

transparent object, the A-buffer method provides advantage in this scenario. Although the A

buffer method requires more memory, but different surface colors can be correctly composed

using it. Being a descendent of the Z-buffer algorithm, each position in the buffer can reference a

linked list of surfaces. The key data structure in the A buffer is the accumulation buffer.

Each position in the A buffer has 2 fields :

1) Depth field

2) Surface data field or Intensity field

A depth field stores a positive or negative real number. A surface data field can stores surface

intensity information or a pointer to a linked list of surfaces that contribute to that pixel position.

As shown in the above figure, if the value of depth is >= 0, the number stored at that position is

the depth of single surfaceoverlapping the corresponding pixel area. The 2nd field, i.e, the

https://www.geeksforgeeks.org/z-buffer-depth-buffer-method/
https://www.geeksforgeeks.org/z-buffer-depth-buffer-method/

Master of Computer Application Dept.

intensity field then stores the RGB components of the surface color at that point and the percent

of pixel coverage.

As shown in the above figure, multiple-surface contributions to the pixel intensity is indicated by

depth < 0. The 2nd field, i.e, the intensity field then stores a pointer to a linked list of surface

data.

A buffer method is slightly costly than Z-buffer method because it requires more memory in

comparison to the Z-buffer method. It proceeds just like the depth buffer algorithm. Here, the

depth and opacity are used to determine the final color of the pixel. As shown in the figure

below, the A buffer method can be used to show the transparent objects.

The surface buffer in the A buffer method includes :

1. Depth

2. Surface Identifier

3. Opacity Parameter

4. Percent of area coverage

5. RGB intensity components

6. Pointer to the next surface

Master of Computer Application Dept.

The other advantage of A buffer method is that it provides anti-aliasing in addition to what Z-

buffer does. The usage of A-buffer algorithm for the transparent surfaces is as shown below :

On applying the A-buffer method on all the six surfaces indicated below, the corresponding

colors are as :

In A-buffer method, each pixel is made up of a group of sub-pixels. The final color of a pixel is

computed by summing up all of its sub-pixels. Due to this accumulation taking place at sub-pixel

level, A-buffer method gets the name accumulation buffer.

(ii) Depth Buffer method.:-

One of the simplest and commonly used image space approach to eliminate hidden surfaces is

the Z-buffer or depth buffer algorithm. It is developed by Catmull. This algorithm compares

surface depths at each pixel position on the projection plane. The surface depth is measured from

the view plane along the z-axis of a viewing system. When object description is converted to

projection co-ordinates (x, y, z), each pixel position on the view plane is specified by x and y

coordinate, and z-value gives the depth information. Thus object depths can be compared by

comparing the z- values.

The Z-buffer algorithm is usually implemented in the normalized coordinates, so that z-values

range from 0 at the back clipping plane to 1 at the front clipping plane. The implementation

requites another buffer memory called Z-buffer along with the frame buffer memory required for

raster display devices. A Z-buffer is used to store depth values for each (x, y) position as surfaces

are processed, and the frame buffer stores the intensity values for each position. At the beginning

Z-buffer is initialized to zero, representing the z-value at the back clipping plane, and the frame

buffer is initialized to the background colour. Each surface listed in the display file is then

Master of Computer Application Dept.

processed, one scan line at a time, calculating the depth (z-value) at each (x, y) pixel position.

The calculated depth value is compared to the value previously stored in the Z-buffer at that

position. If the calculated depth values are greater than the value stored in the Z-buffer, the new

depth value is stored, and the surface intensity at that position is determined and placed in the

same xy location in the frame buffer.

For example, in figure (e) shown below, among three surfaces, surface S1 has the smallest depth

at view position (x, y) and hence highest z value. So it is visible at that position.

Z-buffer Algorithm:-

1. Initialize the Z-buffer and frame buffer so that for all buffer positions

 Z-buffer (x. y) = 0 and frame-buffer (x, y) = Ibackground

2. During scan conversion process, for each position on each polygon surface, compare depth

 values to previously stored values in the depth buffer to determine visibility.

 Calculate z-value for each (x, y) position on the polygon

 If z > Z-buffer (x, y), then set

 Z-buffer (x, y) = z, frame-buffer (x, y) = Isurface(x, y)

3. Stop

Note that, Ibackground is the value for the background intensity, and Isurface is the projected

intensity value for the surface at pixel position (x, y). After processing of all surfaces, the Z-

buffer contains depth values for the visible surfaces and the frame buffer contains the

corresponding intensity values for those surfaces.

To calculate z-values, the plane equation

Ax + By + Cz + D =0

Master of Computer Application Dept.

is used where (x, y, z) is any point on the Plane, and the coefficient A, B, C and D are constants

describing the spatial properties of the Plane.

Therefore, we can write

Note, if at (x, y) the above equation evaluates to z1, then at (x + ∆x, y) the value of z. is,

Only one subtraction is needed to calculate z(x + 1. y), given z(x, y). Since the quotient A/C is

constant and ∆x = 1. A similar incremental calculation can be performed to determine the first

value of z on the next scan line, decrementing by B/C for each ∆y.

Advantages:-

I. It is easy to implement.

1. It can be implemented in hardware to overcome the speed problem.

2. since the algorithm processes objects one at a time, the total number of polygons in a

picture can be arbitrarily large.

Disadvantages:-

I. It requires an additional buffer and hence the large memory.

1. It is a time consuming process as it requires comparison for each pixel instead of for the

entire polygon.

(B) Explain ray-casting method.

Ans:- Ray tracing is probably the best known technique for higher quality graphics. The idea

behind it is not complicated: To find out what you see when you look in a given direction,

consider a ray of light that arrives at your location from that direction, and follow that light ray

backwards to see where it came from. Or, as it is usually phrased, cast a ray from your location in

a given direction, and see what it hits. That's what you see when you look in that direction. The

operation of determining what is hit by a ray is called ray casting. It is fundamental to ray tracing

and to other advanced graphics techniques.

Master of Computer Application Dept.

8.1.1 Ray Casting

We have already seen ray casting used by objects of type THREE.RayCaster in the three.js API

(Subsection 5.3.2). A Raycastertakes an initial point and a direction, given as a vector. The point

and vector determine a ray, that is, a half-infinite line that extends from a starting point, in some

direction, to infinity. The Raycaster can find all the intersections of the ray with a given set of

objects in a three.js scene, sorted by order of distance from the rays's starting point. In this

chapter, we are interested in the first intersection, the one that is closest to the starting point.

To apply ray casting to rendering, let's say that we have a scene consisting of objects in

three-dimensional space, using point lights and directional lights for illumination. We want to

render an image of the scene from a given point of view. It's convenient to imagine the image as

a kind of rectangular window through which the scene is being viewed. Given a point in the

image, we need to know how to color that point. To compute a color for the point, we begin by

casting a ray from the position of the viewer through the point and into the scene. We want to

find the first intersection of that ray with an object in the scene:

In this illustration, the scene contains several red spheres and two point lights. A ray is cast from

the viewpoint (A) through a point (B) in the image. The ray intersects two of the spheres, but we

are only interested in the intersection point (C) that is closest to the viewpoint. That's the point

that is visible at B in the image.

We need to compute the color that the viewer will see at point B. For that, just as in

OpenGL, we need a normal vector at point C, and we need the material properties of the surface

at C. That data has to be computable from the scene description. The visible color also depends

on the light that is illuminating the surface. Consider a light source, and let L be the vector that

http://math.hws.edu/graphicsbook/c5/s3.html#threejs.3.2

Master of Computer Application Dept.

points from C in the direction of the light. If the angle between L and the normal vector is greater

than 90 degrees, then the light source lies behind the surface and so does not add any

illumination. Otherwise, we can use ray casting again: Cast a ray from C in the direction L. If

that ray hits an object before it gets to the light, then that object will block light from that source

from reaching C. That's the case for Light 2 in the illustration: The ray from C in the direction of

Light 2 intersects an object at point E before it gets to the light. On the other hand, the point C is

illuminated by Light 1. A ray from a point on a surface in the direction of a light source is called

a shadow ray, because it can be used to determine whether the surface point lies in the shadow of

another object.

With all this information, we can color point B in the image using the same lighting

equation that is used in OpenGL (Subsection 4.1.4). And, as a bonus, we get shadows, which are

hard to do in OpenGL!

(If the ray from the viewpoint through B doesn't hit any objects in the scene, then B would

be assigned a background color or a "sky" color that varies with different directions. Or maybe

the entire scene is surrounded by a skybox, and a ray that doesn't hit any other object will hit the

skybox.)

Ray casting is conceptually simple, but implementation details can be tricky. Spheres are

actually fairly easy. There is a formula for finding the intersections of a line with a sphere, and a

normal vector at a point on a sphere has the same direction as the line from the center of the

sphere to that point. Assuming that the sphere has a uniform material, we have all the data we

need.

However, surfaces are often given as triangular meshes, with properties specified only at the

vertices of the triangles. Suppose that the intersection point found by our ray caster lies in one of

those triangles. We will have to compute the properties of that intersection point

by interpolating the property values that were specified at the vertices of the triangle.

The interpolation algorithm typically uses something called barycentric coordinates on the

triangle: If A, B, and C are the vertices of a triangle, and P is a point in the triangle, then P can be

written uniquely in the form a*A + b*B + c*C, where a, b, and care numbers in the range zero to

one, and a + b + c = 1. The coefficients a, b, and c are called the barycentric coordinates of the

point P in the triangle. If some quantity has values V(A), V(B), and V(C) at the vertices of the

triangle, then we can use the barycentric coordinates of P to get an interpolated value at P:

http://math.hws.edu/graphicsbook/c4/s1.html#gl1light.1.4

Master of Computer Application Dept.

V(P) = a*V(A) + b*V(B) + c*V(C)

The quantity might be, for example, diffuse color, texture coordinates, or a normal vector. (Of

course, I'm still leaving out a lot of the math here—how to test whether a line intersects a triangle

and how to find barycentric coordinates of the point of intersection. There are formulas, but

conceptually, they wouldn't add much to the discussion.)

8.1.2 Recursive Ray Tracing

Basic ray casting can be used to compute OpenGL-style rendering and, with the addition of

shadow rays, to implement shadows as well. More features can be implemented by casting a few

more rays. The improved algorithm is called ray tracing.

Consider specular reflection. In OpenGL, specular reflection can make an object look shiny

in the sense that specular highlights can be seen where the object reflects light from a light

source towards the viewer. But in reality, an object that has a mirror-like surface doesn't just

reflect light sources; it also reflects other objects. If we are trying to compute a color for a

point, A, on a mirror-like surface, we need to consider the contribution to that color from mirror-

like reflection of other objects. To do that, we can cast a "reflected ray" from A. The direction of

the reflected ray is determined by the normal vector to the surface at A and by the direction

from A to the viewer. This illustration shows a 2D version. Think of it as a cross-section of the

situation in 3D:

Master of Computer Application Dept.

Here, the reflected ray from point A hits the purple square at point B, and the viewer will see a

reflection of point B at A. (Remember that in ray tracing, we follow the path of light

rays backwards from the viewer, to find out where they came from.)

To find out what the reflection of B looks like, we need to know the color of the the ray that

arrives at A from B. But finding a color for B is the same sort of problem as finding a color

for A, and we should solve it in the same way: by applying the ray-tracing algorithm to B! That

is, we use the material properties of the surface at B, we cast shadow rays from B towards light

sources to determine how B is illuminated, and—if the purple square has a mirror-like surface—

we cast a reflected ray from B to find out what it reflects. In the illustration, the reflected ray

from B hits a pentagon at point C, so the square reflects an image of the pentagon, and the disk

reflects an image of the square, including its reflection of the pentagon. Ray-tracing can handle

multiple mirror-like reflections between objects in a scene!

Because applying the ray-tracing algorithm at one point can involve applying the same

algorithm at additional points, ray tracing is a recursive algorithm. To distinguish this from

simple ray casting, ray tracing is often referred to as "recursive ray tracing."

Ray tracing can be extended in a similar way to handle transparency or, more properly,

translucency. When computing a color for a point on a translucent object, we need to take into

account light that arrives at that point through the object. To do that, we can cast yet another ray

from that point, this time into the object. When a light ray passes from one medium, such as air,

into another medium, such as glass, the path of the light ray can bend. This bending is

called refraction, and the ray that is cast through a translucent object is called the "refracted ray."

The above illustration shows the refracted ray from point A passing through the object and

emerging from the object at D. To find a color for that ray, we would need to find out what, if

anything, it hits, and we would need to apply ray tracing recursively at the point of intersection.

(The degree of bending of a light ray that passes from one medium to another depends on a

property of the two media called the "index of refraction." More exactly, it depends on the ratio

between the two indices of refraction. In practice, the index of refraction outside objects is often

taken to be equal to one, so that the bending depends only on the index of refraction of an object.

The index of refraction is another material property for translucent objects. It is often

abbreviated IOR.)

Master of Computer Application Dept.

We should look at the computations in a little more detail. The goal is to compute a color

for a point on an image. We cast a ray from the viewpoint through the image and into the scene,

and determine the first intersection point of the ray with an object. The color of that point is

computed by adding up the contributions from different sources.

First, there are diffuse, specular, and possibly ambient reflection of light from various light

sources. These contributions are based on the diffuse, specular, and ambient colors of the object,

on the normal vector to the object, and on the properties of the light sources. Note that some

color properties of the object, usually the ambient and diffuse colors, might come from a texture.

The specular contribution can produce specular highlights, which are essentially the reflections

of light sources. Shadow rays are used to determine which directional and point lights illuminate

the object; aside from that, this part of the calculation is similar to OpenGL.

Next, if the surface has mirror-like reflection, then a reflected ray is cast and ray tracing is

applied recursively to find a color for that ray. The contribution from that ray is combined with

other contributions to the color of the surface, depending on the strength of the mirror reflection.

For a perfect mirror, the reflected ray contributes 100% of the color, but in general the

contribution is less. Mirror reflectivity is a new material property. It is responsible for reflections

of one object on the surface of another, while specular color is responsible for specular

highlights.

Finally, if the object is translucent, then a refracted ray is cast, and ray tracing is used to find

its color. The contribution of that ray to the color of the object depends on the degree of

transparency of the object, since some of the light can be absorbed rather than transmitted. The

degree of transparency can depend on the wavelength of the light—as it does, for example, in

colored glass.

And, of course, all of these calculations need to be done three times, for the red, the green,

and the blue components of the color.

The ray tracing algorithm is recursive, and, as every programmer knows, recursion needs a

base case. That is, there has to come a time when, instead of calling itself, the algorithm simply

returns a value. A base case occurs whenever a casted ray does not intersect any objects. Another

kind of base case can occur when it is determined that casting more rays cannot contribute any

significant amount to the color of the image. For example, whenever a ray is reflected, some of

that ray is absorbed rather than reflected, depending on the color of the object from which it is

reflected. After reflecting many times, a ray would have very little color left to contribute to the

Master of Computer Application Dept.

final result. A ray can also lose energy because of attenuation of light with distance, and a ray-

tracing algorithm might take that into account. In addition, a ray tracing algorithm should always

be run with a maximum recursion depth, to put an absolute limit on the number of times the

algorithm will call itself.

8.1.3 Limitations of Ray Tracing

Although ray tracing can produce very realistic images, there are some things that it can't do. For

example, while ray tracing works well for point lights and directional lights, it can't handle area

lights. An area light is one that has area. That is, it is an object that emits light from its entire

surface area rather than from a single point. Of course, real lights are area lights. A fluorescent

light emits light from the surface of a cylinder. A brightly lit window can be considered to be a

kind of area light. Even a light bulb does not really radiate light from a single point. Ray tracing

uses shadow rays to tell whether a light source illuminates an object. But a shadow ray is cast in

only one direction, and can only hit one point on an area light. To implement area lights exactly,

a different shadow ray would be needed for each point on the surface of the light.

A ray tracer can handle area lights in an approximate way, by replacing the area light with a

grid of point lights. It can then cast a shadow ray towards each point in the grid. Using more

point lights in the grid will give a better approximation. Of course, casting all those shadow rays

can add significantly to the computation time.

Another problem with lighting in ray tracing is that it doesn't take into account illumination

by reflected light. For example, light from a light source should reflect off a mirror, and the

reflected light should illuminate other objects. Ray tracing uses shadow rays to tell whether a

light source illuminates an object. But that won't work for reflected light, since the algorithm

doesn't know where to aim the shadow ray—reflected light could come from any direction.

This is not just a problem with mirrors. Any reflected light, even from diffuse reflection,

should illuminate nearby objects. For example, light that is reflected diffusely from a green

object should add a green tint to nearby objects. This effect is called "color bleeding." In reality,

light can be reflected and re-reflected many times, contributing a bit of color to each object that it

hits. As with area lights, approximate methods can be added to ray tracing to simulate this effect.

For example, "photon mapping" adds a pre-processing phase to ray tracing which simulates the

emission of a large number of light rays, or "photons," from light sources, and tracks their paths

Master of Computer Application Dept.

through the scene to see how they add color to the objects that they hit. The information from

this "photon map" is then used during the ray tracing phase to produce more realistic colors.

OpenGL uses ambient light as an approximation for light that has been reflected and re-

reflected many times. Ambient light is assumed to illuminate every object equally. However, that

is a poor approximation. A better approximation uses ambient occlusion, the idea that ambient

light heading towards a surface can be blocked, or "occluded," by nearby objects. Like ambient

light, ambient occlusion is not physically realistic, but in practice, it can make lighting look more

realistic and objects look more three-dimensional. One technique for estimating ambient

occlusion uses ray casting. We assume that the ambient light comes from the background of the

scene. To estimate ambient occlusion at a point, cast a number of rays from that point in random

directions, and count how many of those rays are blocked by geometry in the scene and how

many reach the sky. The more rays that are blocked, the greater the degree of ambient occlusion

at that point.

 Explain Scan line method in detail.

Ans:- A scan line method of hidden surface removal is an another approach of image space

method. It is an extension of the scan line algorithm for filling polygon interiors. Here, the

algorithm deals with more than one surfaces. As each scan line is processed, it examines all

polygon surfaces intersecting that line to determine which are visible. It then does the depth

calculation and finds which polygon is nearest to the view plane. Finally, it enters the intensity

value of the nearest polygon at that position into the frame buffer.

The scan line algorithm maintains the edge list in the edge table(ET). The AET(Active Edge

Table) contains only edges that cross the current scan Line, sorted in order of increasing x. The

scan line method of hidden surface removal also stores a flag for each surface that is set on or off

to indicate whether a position along a scan line is inside or outside of the surface. Scan lines are

processed from left to right. At the leftmost boundary of a surface, the surface flag is turned ON;

and at the rightmost boundary, it is turned OFF.

Master of Computer Application Dept.

The figure (f) illustrates the scan line method for hidden surface removal. As shown in the Fig.

(f), the active edge list for scan line 1 contains the information for edges AD, BC, EH and FG.

for the positions along this scan line between edges AD and BC, only the flag for surface S1 is

ON. Therefore, no depth calculations are necessary, and intensity information for surface S1 is

entered into the frame buffer. Similarly, between edges EH and FG, only the flag for surface S2

is ON and during that portion of scan line the intensity information for surface S2, is entered into

the frame buffer.

For scan line 2 in the figure (f), the active edge list contains edges AD, EH, BC and FG. Along

the scan line 2 from edge AD to edge EH, only the flag for surfaces S1 is ON. However, between

edges EH and BC, the flags for both surfaces are ON. In this portion of scan line 2, the depth

calculations are necessary. Here we have assumed that the depth of S1 is less than the depth of

S2 and hence the intensities of surface S1 are loaded into the frame buffer. Then, for edge BC to

edge FG portion of scan line 2 intensities of surface S2 are entered into the frame buffer because

during that portion only flag for S2 is ON.

To implement this algorithm along with AET we are required to maintain a polygon table (PT)

that contains at least the following information for each polygon, in addition to ID.

1. The coefficient of the plane equation.

2. Shading or colour information for the polygon.

3. A in-out Boolean flag, initialized to false and used during scan line processing.

Master of Computer Application Dept.

Fig. (g) Shows the ET, PT and AET for the scan line algorithm.

