

DBMS

UNIT-I

Introduction:-

Database Management System (DBMS) is software for storing and retrieving users’ data while

considering appropriate security measures. It consists of a group of programs that manipulate the

database. The DBMS accepts the request for data from an application and instructs the operating

system to provide the specific data. In large systems, a DBMS helps users and other third-party

software store and retrieve data.

DBMS allows users to create their own databases as per their requirements. The term “DBMS”

includes the user of the database and other application programs. It provides an interface between

the data and the software application.

In this Database Management System tutorial, you will learn DBMS concepts like-

Example of a DBMS

Let us see a simple example of a university database. This database is maintaining information

concerning students, courses, and grades in a university environment. The database is organized

as five files:

• The STUDENT file stores the data of each student

• The COURSE file stores contain data on each course.

• The SECTION stores information about sections in a particular course.

• The GRADE file stores the grades which students receive in the various sections

• The TUTOR file contains information about each professor.

To define DBMS:

• We need to specify the structure of the records of each file by defining the different types

of data elements to be stored in each record.

• We can also use a coding scheme to represent the values of a data item.

• Basically, your Database will have 5 tables with a foreign key defined amongst the various

tables.

Advantages of DBMS

https://www.guru99.com/introduction-to-database-sql.html

• DBMS offers a variety of techniques to store & retrieve data

• DBMS serves as an efficient handler to balance the needs of multiple applications using

the same data

• Uniform administration procedures for data

• Application programmers are never exposed to details of data representation and storage.

• A DBMS uses various powerful functions to store and retrieve data efficiently.

• Offers Data Integrity and Security

• The DBMS implies integrity constraints to get a high level of protection against prohibited

access to data.

• A DBMS schedules concurrent access to the data in such a manner that only one user can

access the same data at a time

• Reduced Application Development Time

Disadvantage of DBMS
DBMS may offer plenty of advantages, but it has certain flaws-

• The cost of Hardware and Software of a DBMS is quite high, which increases the budget

of your organization.

• Most database management systems are often complex, so training users to use the DBMS

is required.

• In some organizations, all data is integrated into a single database that can be damaged

because of electric failure or corruption in the storage media.

• Using the same program at a time by multiple users sometimes leads to data loss.

• DBMS can’t perform sophisticated calculations

Significance

Most DBMS include the following:

• Storage engine - As the core component of a DBMS, this stores the data. It’s the part of

the system that communicates with the file system at the OS level. It’s the gateway for all

the SQL queries that interact with the stored data.

• System catalog or database dictionary - Also called the metadata catalog, this component

is a centralized repository for all created database objects. It is used to confirm data requests

from users and also to provide information about a database’s objects, security,

performance, and more.

• Database access language - every DBMS needs an application programming interface

(API) to enable users to create databases and access data, and it usually comes in the form

of a database access language. For instance, structured query language (SQL) is the default

data access language in relational databases.

• Optimization engine - This component processes data requests and transforms them into

actionable commands. It also helps tune databases for optimal performance.

• Query processor - Once a query (data request) has gone through the optimization engine,

the query processor handles the request and feeds back the results. It acts as a sort of

middleman between the database and user queries.

• Lock manager - This component keeps multiple users from modifying the same data at

the same time. It locks access for each user in turn.

• Log manager - All DBMS keep records of how and when data in the database is modified,

created, or deleted. The log manager records this information and can also integrate with

database utilities to recover data or make backups. It manages the logs by organizing them

and keeping them easily accessible.

• Data utilities - This category is an umbrella term for a variety of components that simplify

database management and monitor activity. They can include software for data backup and

restore, integrity checks, reporting and monitoring, simple repair, validations, and so on.

Types of DBMS

Types of DBMS

The main Four Types of Database Management Systems are:

• Hierarchical database

• Network database

• Relational database

• Object-Oriented database

https://www.guru99.com/images/1/122118_0515_WhatisDBMSA1.png

Hierarchical DBMS

In a Hierarchical database, model data is organized in a tree-like structure. Data is Stored

Hierarchically (top-down or bottom-up) format. Data is represented using a parent-child

relationship. In Hierarchical DBMS, parents may have many children, but children have only one

parent.

Network Model

The network database model allows each child to have multiple parents. It helps you to address

the need to model more complex relationships like the orders/parts many-to-many relationship. In

this model, entities are organized in a graph which can be accessed through several paths.

Relational Model

Relational DBMS is the most widely used DBMS model because it is one of the easiest. This

model is based on normalizing data in the rows and columns of the tables. Relational model stored

in fixed structures and manipulated using SQL.

Object-Oriented Model

In the Object-oriented Model data is stored in the form of objects. The structure is called classes

which display data within it. It is one of the components of DBMS that defines a database as a

collection of objects that stores both data members’ values and operations.

DBMS Architecture

A Database Architecture is a representation of DBMS design. It helps to design, develop,

implement, and maintain the database management system. A DBMS architecture allows dividing

the database system into individual components that can be independently modified, changed,

replaced, and altered. It also helps to understand the components of a database.

A Database stores critical information and helps access data quickly and securely. Therefore,

selecting the correct Architecture of DBMS helps in easy and efficient data management.

Types of DBMS Architecture
There are mainly three types of DBMS architecture:

• One Tier Architecture (Single Tier Architecture)

• Two Tier Architecture

https://www.guru99.com/introduction-to-database-sql.html

• Three Tier Architecture

Now, we will learn about different architecture of DBMS with diagram.

1-Tier Architecture

Tier Architecture in DBMS is the simplest architecture of Database in which the client, server,

and Database all reside on the same machine. A simple one tier architecture example would be

anytime you install a Database in your system and access it to practice SQL queries. But such

architecture is rarely used in production.

1 Tier Architecture Diagram

2-Tier Architecture

A 2 Tier Architecture in DBMS is a Database architecture where the presentation layer runs on

a client (PC, Mobile, Tablet, etc.), and data is stored on a server called the second tier. Two tier

architecture provides added security to the DBMS as it is not exposed to the end-user directly. It

also provides direct and faster communication.

2 Tier Architecture Diagram

https://www.guru99.com/images/1/091318_0745_DBMSArchite1.png
https://www.guru99.com/images/1/091318_0745_DBMSArchite2.png

In the above 2 Tier client-server architecture of database management system, we can see that

one server is connected with clients 1, 2, and 3.

Two Tier Architecture Example:

A Contact Management System created using MS- Access.

3-Tier Architecture

A 3 Tier Architecture in DBMS is the most popular client server architecture in DBMS in which

the development and maintenance of functional processes, logic, data access, data storage, and

user interface is done independently as separate modules. Three Tier architecture contains a

presentation layer, an application layer, and a database server.

3-Tier database Architecture design is an extension of the 2-tier client-server architecture. A 3-tier

architecture has the following layers:

Presentation layer (your PC, Tablet, Mobile, etc.)

Application layer (server)

Database Server

3 Tier Architecture Diagram

The Application layer resides between the user and the DBMS, which is responsible for

communicating the user’s request to the DBMS system and send the response from the DBMS to

the user. The application layer(business logic layer) also processes functional logic, constraint,

and rules before passing data to the user or down to the DBMS.

The goal of Three Tier client-server architecture is:

To separate the user applications and physical database

To support DBMS characteristics

Program-data independence

Supporting multiple views of the data

https://www.guru99.com/ms-access-tutorial.html
https://www.guru99.com/images/1/091318_0745_DBMSArchite3.png

Function of DBMS

Data Storage Management

One of the most important tasks for DBMS is to create a database for complex data and manage

the data. It gives relief to the user by creating a structure for the complex data sets so that users

can access it and manipulate them very easily. Modern database systems not only provide storage

for the data but they store and manage the metadata (data of data) like data procedural rules,

validation rules etc. DBMS also provides performance tuning, which makes accessing data faster

and easier.

Security Management

Security is another aspect which is handled by the Database Management Systems. Database

systems provide a high level of security measures using various security algorithms to keep the

data safe and ensure the data privacy. There are certain security rules that ensure what data can be

accessed from the database and which user can access it. It also makes sure what operations (read,

write, delete) can be performed on the specific data. It is very important for the organizations where

multi-user databases are required.

Backup and Recovery Management

To keep the data safe and ensure the integrity, the database system provides the features for backup

and recovery management. If the system fails due to some reason then it recovers the data and

keeps the data safe.

Database Access Language and Application Programming Interface

DBMS provides a database access language which is also called a query language. Query

languages are non-procedural languages used to access the database and manipulate the data. SQL

is an example of a query language. The majority of DBMS vendors provide the support of various

query languages to access the data.

Data Dictionary Management

Data dictionary management is also useful functionality provided by the Database Management

System. In the data dictionary, it stores the data and its related information about its relationship.

So, a data dictionary keeps the data structures and their relationships with other data, so that a

programmer is not responsible for storing the relationship in the database through complex coding.

DBMS provides the data abstraction and removes the dependency of the data from the system.

Data Transformation and Presentation

DBMS provides the functionality of data transformation, which means programmers need not

worry about the logical and physical representation of the data. DBMS stores the data in the

determined data structure.

For example, if a user asks for the date from a database and he receives it as 14 December 2022,

but in the database, it is stored in different columns of month, date and year.

Multi User Access Control

Multi User Access control is another feature which is provided by the modern Database Systems.

So, more than one user can access the database at the same time without any problem. This feature

makes sure the integrity of the data present in the database. It also follows the ACID property, so

the database will be consistent while multiple users are accessing it concurrently. It is very useful

for the database of organizations where multiple database engineers are working concurrently.

Data Integrity Management

Database systems provide data integrity management by maximizing the data consistency and

minimizing the data redundancy. The data dictionary is the feature database system used to store

the relationships of the data to keep the data integrity. Data integrity is needed where a transaction

based database system is present.

Database Communication Interface

When a user requests data from the database, it uses some environments like browsers (Chrome or

Firefox etc.) to get the data.

An end user can access data in the following ways:

o If he asks for the data through any form and sends the request.

o He can get the data if DBMS publishes the data on any website without asking him.

o He can get the data through a third party distribution network.

Relational Model in DBMS

Relational model can represent as a table with columns and rows. Each row is known as a

tuple. Each table of the column has a name or attribute.

Domain: It contains a set of atomic values that an attribute can take.

Attribute: It contains the name of a column in a particular table. Each attribute Ai must have a

domain, dom(Ai)

Relational instance: In the relational database system, the relational instance is represented by a

finite set of tuples. Relation instances do not have duplicate tuples.

Relational schema: A relational schema contains the name of the relation and name of all columns

or attributes.

Relational key: In the relational key, each row has one or more attributes. It can identify the row

in the relation uniquely.

Example: STUDENT Relation

NAME ROLL_NO PHONE_NO ADDRESS AGE

Ram 14795 7305758992 Noida 24

Shyam 12839 9026288936 Delhi 35

Laxman 33289 8583287182 Gurugram 20

Mahesh 27857 7086819134 Ghaziabad 27

Ganesh 17282 9028 9i3988 Delhi 40

Introduction of ER Model
The Entity Relational Model is a model for identifying entities to be represented in the database

and representation of how those entities are related. The ER data model specifies enterprise

schema that represents the overall logical structure of a database graphically.

The Entity Relationship Diagram explains the relationship among the entities present in the

database. ER models are used to model real-world objects like a person, a car, or a company and

the relation between these real-world objects. In short, the ER Diagram is the structural format

of the database.

Why Use ER Diagrams In DBMS?
• ER diagrams are used to represent the E-R model in a database, which makes them easy to

be converted into relations (tables).

• ER diagrams provide the purpose of real-world modeling of objects which makes them

intently useful.

• ER diagrams require no technical knowledge and no hardware support.

• These diagrams are very easy to understand and easy to create even for a naive user.

• It gives a standard solution for visualizing the data logically.

Symbols Used in ER Model
ER Model is used to model the logical view of the system from a data perspective which consists

of these symbols:

• Rectangles: Rectangles represent Entities in the ER Model.

• Ellipses: Ellipses represent Attributes in the ER Model.

• Diamond: Diamonds represent Relationships among Entities.

• Lines: Lines represent attributes to entities and entity sets with other relationship types.

• Double Ellipse: Double Ellipses represent Multi-Valued Attributes.

• Double Rectangle: Double Rectangle represents a Weak Entity.

Components of ER Diagram
ER Model consists of Entities, Attributes, and Relationships among Entities in a Database

System.

https://iotap.geeksforgeeks.org/problems/what-is-the-difference-between-single-valued-and-multi-valued-attributes

Entity

An Entity may be an object with a physical existence – a particular person, car, house, or

employee – or it may be an object with a conceptual existence – a company, a job, or a

university course.

Entity Set: An Entity is an object of Entity Type and a set of all entities is called an entity

set. For Example, E1 is an entity having Entity Type Student and the set of all students

is called Entity Set. In ER diagram, Entity Type is represented as:

1. Strong Entity

A Strong Entity is a type of entity that has a key Attribute. Strong Entity does not depend

on other Entity in the Schema. It has a primary key, that helps in identifying it uniquely,

and it is represented by a rectangle. These are called Strong Entity Types.
2. Weak Entity

An Entity type has a key attribute that uniquely identifies each entity in the entity set.

But some entity type exists for which key attributes can’t be defined. These are

called Weak Entity types.

For Example, A company may store the information of dependents (Parents, Children,

Spouse) of an Employee. But the dependents don’t have existed without the employee.

So Dependent will be a Weak Entity Type and Employee will be Identifying Entity

type for Dependent, which means it is Strong Entity Type.

https://www.geeksforgeeks.org/difference-between-strong-and-weak-entity/
https://www.geeksforgeeks.org/weak-entity-set-in-er-diagrams/

A weak entity type is represented by a Double Rectangle. The participation of weak

entity types is always total. The relationship between the weak entity type and its

identifying strong entity type is called identifying relationship and it is represented by a

double diamond.

Attributes

Attributes are the properties that define the entity type. For example, Roll_No, Name,

DOB, Age, Address, and Mobile_No are the attributes that define entity type Student. In

ER diagram, the attribute is represented by an oval.

1. Key Attribute

The attribute which uniquely identifies each entity in the entity set is called the key

attribute. For example, Roll_No will be unique for each student. In ER diagram, the key

attribute is represented by an oval with underlying lines.

2. Composite Attribute

An attribute composed of many other attributes is called a composite attribute. For

example, the Address attribute of the student Entity type consists of Street, City, State,

and Country. In ER diagram, the composite attribute is represented by an oval comprising

of ovals.

https://www.geeksforgeeks.org/types-of-attributes-in-er-model/

3. Multivalued Attribute

An attribute consisting of more than one value for a given entity. For example, Phone_No

(can be more than one for a given student). In ER diagram, a multivalued attribute is

represented by a double oval.

4. Derived Attribute

An attribute that can be derived from other attributes of the entity type is known as a

derived attribute. e.g.; Age (can be derived from DOB). In ER diagram, the derived

attribute is represented by a dashed oval.

The Complete Entity Type Student with its Attributes can be represented as:

Relationship Type and Relationship Set

A Relationship Type represents the association between entity types. For example,

‘Enrolled in’ is a relationship type that exists between entity type Student and Course. In

ER diagram, the relationship type is represented by a diamond and connecting the entities

with lines.

A set of relationships of the same type is known as a relationship set. The following

relationship set depicts S1 as enrolled in C2, S2 as enrolled in C1, and S3 as registered

in C3.

Degree of a Relationship Set

The number of different entity sets participating in a relationship set is called the degree

of a relationship set.

1. Unary Relationship: When there is only ONE entity set participating in a relation, the

relationship is called a unary relationship. For example, one person is married to only one

person.

2. Binary Relationship: When there are TWO entities set participating in a relationship,

the relationship is called a binary relationship. For example, a Student is enrolled in a

Course.

3. n-aray Relationship: When there are n entities set participating in a relation, the

relationship is calle an n-ary relationship.
Cardinality

The number of times an entity of an entity set participates in a relationship set is known

as cardinality. Cardinality can be of different types:

1. One-to-One: When each entity in each entity set can take part only once in the

relationship, the cardinality is one-to-one. Let us assume that a male can marry one

female and a female can marry one male. So the relationship will be one-to-one.

the total number of tables that can be used in this is 2.

one to one cardinality

Using Sets, it can be represented as:

https://www.geeksforgeeks.org/degree-of-relations-in-dbms/
https://www.geeksforgeeks.org/degree-of-relations-in-dbms/
https://www.geeksforgeeks.org/cardinality-in-dbms/

2. One-to-Many: In one-to-many mapping as well where each entity can be related to

more than one relationship and the total number of tables that can be used in this is 2. Let

us assume that one surgeon deparment can accomodate many doctors. So the Cardinality

will be 1 to M. It means one deparment has many Doctors.

total number of tables that can used is 3.

one to many cardinality

Using sets, one-to-many cardinality can be represented as:

Set Representation of One-to-Many

3. Many-to-One: When entities in one entity set can take part only once in the

relationship set and entities in other entity sets can take part more than once in the

relationship set, cardinality is many to one. Let us assume that a student can take only

one course but one course can be taken by many students. So the cardinality will be n to

1. It means that for one course there can be n students but for one student, there will be

only one course.

The total number of tables that can be used in this is 3.

many to one cardinality

Using Sets, it can be represented as:

Set Representation of Many-to-One

In this case, each student is taking only 1 course but 1 course has been taken by many

students.

4. Many-to-Many: When entities in all entity sets can take part more than once in the

relationship cardinality is many to many. Let us assume that a student can take more than

one course and one course can be taken by many students. So the relationship will be

many to many.

the total number of tables that can be used in this is 3.

many to many cardinality

Using Sets, it can be represented as:

Many-to-Many Set Representation

In this example, student S1 is enrolled in C1 and C3 and Course C3 is enrolled by S1, S3,

and S4. So it is many-to-many relationships.

Participation Constraint

Participation Constraint is applied to the entity participating in the relationship set.

1. Total Participation – Each entity in the entity set must participate in the relationship.

If each student must enroll in a course, the participation of students will be total. Total

participation is shown by a double line in the ER diagram.

2. Partial Participation – The entity in the entity set may or may NOT participate in the

relationship. If some courses are not enrolled by any of the students, the participation in

the course will be partial.

The diagram depicts the ‘Enrolled in’ relationship set with Student Entity set having

total participation and Course Entity set having partial participation.

Using Set, it can be represented as,

https://www.geeksforgeeks.org/structural-constraints-of-relationships-in-er-model/

Every student in the Student Entity set participates in a relationship but there exists a

course C4 that is not taking part in the relationship.

How to Draw ER Diagram?
• The very first step is Identifying all the Entities, and place them in a Rectangle, and

labeling them accordingly.

• The next step is to identify the relationship between them and pace them accordingly

using the Diamond, and make sure that, Relationships are not connected to each

other.

• Attach attributes to the entities properly.

• Remove redundant entities and relationships.

• Add proper colors to highlight the data present in the database.

Extended Entity-Relationship

EER is a high-level data model that incorporates the extensions to the original ER

model. Enhanced ERD are high level models that represent the requirements and

complexities of complex database.

In addition to ER model concepts EE-R includes −

• Subclasses and Super classes.

• Specialization and Generalization.

• Category or union type.

• Aggregation.

These concepts are used to create EE-R diagrams.

Subclasses and Super class

Super class is an entity that can be divided into further subtype.

For example − consider Shape super class.

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm
https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

Super class shape has sub groups: Triangle, Square and Circle.

Sub classes are the group of entities with some unique attributes. Sub class

inherits the properties and attributes from super class.

Specialization and Generalization

Generalization is a process of generalizing an entity which contains generalized

attributes or properties of generalized entities.

It is a Bottom up process i.e. consider we have 3 sub entities Car, Truck and

Motorcycle. Now these three entities can be generalized into one super class
named as Vehicle.

Specialization is a process of identifying subsets of an entity that share some

different characteristic. It is a top down approach in which one entity is broken
down into low level entity.

In above example Vehicle entity can be a Car, Truck or Motorcycle.

Category or Union

Relationship of one super or sub class with more than one super class.

Owner is the subset of two super class: Vehicle and House.

Aggregation

Represents relationship between a whole object and its component.

Consider a ternary relationship Works_On between Employee, Branch and

Manager. Now the best way to model this situation is to use aggregation, So, the

relationship-set, Works_On is a higher level entity-set. Such an entity-set is

treated in the same manner as any other entity-set. We can create a binary

relationship, Manager, between Works_On and Manager to represent who

manages what tasks.

Relational Model in DBMS

Relational model can represent as a table with columns and rows. Each row is known as a

tuple. Each table of the column has a name or attribute.

Domain: It contains a set of atomic values that an attribute can take.

Attribute: It contains the name of a column in a particular table. Each attribute Ai must

have a domain, dom(Ai)

Relational instance: In the relational database system, the relational instance is

represented by a finite set of tuples. Relation instances do not have duplicate tuples.

Relational schema: A relational schema contains the name of the relation and name of

all columns or attributes.

Relational key: In the relational key, each row has one or more attributes. It can identify

the row in the relation uniquely.

Example: STUDENT Relation

NAME ROLL_NO PHONE_NO ADDRESS AGE

Ram 14795 7305758992 Noida 24

Shyam 12839 9026288936 Delhi 35

Laxman 33289 8583287182 Gurugram 20

Mahesh 27857 7086819134 Ghaziabad 27

Ganesh 17282 9028 9i3988 Delhi 40

o In the given table, NAME, ROLL_NO, PHONE_NO, ADDRESS, and AGE are the attributes.

o The instance of schema STUDENT has 5 tuples.

o t3 = <Laxman, 33289, 8583287182, Gurugram, 20>

Properties of Relations

o Name of the relation is distinct from all other relations.

o Each relation cell contains exactly one atomic (single) value

o Each attribute contains a distinct name

o Attribute domain has no significance

o tuple has no duplicate value

o Order of tuple can have a different sequence

Database Schema

A database schema is the skeleton structure that represents the logical view of the
entire database. It defines how the data is organized and how the relations among

them are associated. It formulates all the constraints that are to be applied on the
data.

A database schema defines its entities and the relationship among them. It contains

a descriptive detail of the database, which can be depicted by means of schema
diagrams. It’s the database designers who design the schema to help programmers
understand the database and make it useful.

A database schema can be divided broadly into two categories −

• Physical Database Schema − This schema pertains to the actual storage of data

and its form of storage like files, indices, etc. It defines how the data will be
stored in a secondary storage.

• Logical Database Schema − This schema defines all the logical constraints that

need to be applied on the data stored. It defines tables, views, and integrity

constraints.

Database Instance
It is important that we distinguish these two terms individually. Database schema is
the skeleton of database. It is designed when the database doesn't exist at all. Once
the database is operational, it is very difficult to make any changes to it. A database

schema does not contain any data or information.

A database instance is a state of operational database with data at any given time.
It contains a snapshot of the database. Database instances tend to change with time.

A DBMS ensures that its every instance (state) is in a valid state, by diligently
following all the validations, constraints, and conditions that the database designers

have imposed.

Relational query languages

Query is a question or requesting information. Query language is a language

which is used to retrieve information from a database. Relational Database

systems are expected to be equipped with a query language that assists users to

query the database. Relational Query Language is used by the user to

communicate with the database user requests for the information from the

database. Relational algebra breaks the user requests and instructs the DBMS to

execute the requests. It is the language by which the user communicates with

the database. They are generally on a higher level than any other programming

language. These relational query languages can be Procedural and Non-

Procedural.

Query language is divided into two types as follows −

• Procedural language

• Non-procedural language

Procedural language

Information is retrieved from the database by specifying the sequence of

operations to be performed.

For Example: Relational algebra

Structure Query language (SQL) is based on relational algebra.

Relational algebra consists of a set of operations that take one or two relations

as an input and produces a new relation as output.

The different types of relational algebra operations are −

• Select operation

• Project operation

• Rename operation

• Union operation

• Intersection operation

• Difference operation

• Cartesian product operation

• Join operation

• Division operation.

Select, project, rename comes under unary operation (operate on one table).

Union, intersection, difference, cartesian, join, division comes under binary

operation (operate on two tables).

Non-Procedural language

Information is retrieved from the database without specifying the sequence of

operation to be performed. Users only specify what information is to be retrieved.

For Example: Relational Calculus

Query by Example (QBE) is based on Relational calculus

Relational calculus is a non-procedural query language in which information is

retrieved from the database without specifying sequence of operation to be

performed.

Relational calculus is of two types which are as follows −

• Tuple calculus

• Domain calculus

Relational Algebra
Relational algebra is a procedural query language. It gives a step by step process to obtain

the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:
o The select operation selects tuples that satisfy a given predicate.

o It is denoted by sigma (σ).

1. Notation: σ p(r)

Where:

σ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and

NOT. These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown L-17 1000

Redwood L-23 2000

Perryride L-15 1500

Downtown L-14 1500

Mianus L-13 500

Roundhill L-11 900

Perryride L-16 1300

Input:

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

2. Project Operation:
o This operation shows the list of those attributes that we wish to appear in the result. Rest

of the attributes are eliminated from the table.

o It is denoted by ∏.

1. Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Hays Main Harrison

Curry North Rye

Johnson Alma Brooklyn

Brooks Senator Brooklyn

Input:

1. ∏ NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison

Smith Rye

Hays Harrison

Curry Rye

Johnson Brooklyn

Brooks Brooklyn

3. Union Operation:
o Suppose there are two tuples R and S. The union operation contains all the tuples that are

either in R or S or both in R & S.

o It eliminates the duplicate tuples. It is denoted by ∪.

1. Notation: R ∪ S

A union operation must hold the following condition:

o R and S must have the attribute of the same number.

o Duplicate tuples are eliminated automatically.

Example:
DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101

Smith A-121

Mayes A-321

Turner A-176

Johnson A-273

Jones A-472

Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23

Hayes L-15

Jackson L-14

Curry L-93

Smith L-11

Williams L-17

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson

Smith

Hayes

Turner

Jones

Lindsay

Jackson

Curry

Williams

Mayes

4. Set Intersection:
o Suppose there are two tuples R and S. The set intersection operation contains all tuples

that are in both R & S.

o It is denoted by intersection ∩.

1. Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:
o Suppose there are two tuples R and S. The set intersection operation contains all tuples

that are in R but not in S.

o It is denoted by intersection minus (-).

1. Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson

Hayes

Willians

Curry

6. Cartesian product
o The Cartesian product is used to combine each row in one table with each row in the other

table. It is also known as a cross product.

o It is denoted by X.

1. Notation: E X D

Example:
EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Smith A A Marketing

1 Smith A B Sales

1 Smith A C Legal

2 Harry C A Marketing

2 Harry C B Sales

2 Harry C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

7. Rename Operation:
The rename operation is used to rename the output relation. It is denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. ρ(STUDENT1, STUDENT)

Relational Calculus in DBMS
Relational calculus, a non-procedural query language in database management systems, guides users on

what data is needed without specifying how to obtain it. Commonly utilized in commercial relational

languages like SQL-QBE and QUEL, relational calculus ensures a focus on desired data without delving into

procedural details, promoting a more efficient and abstract approach to querying in relational databases.

What is Relational Calculus?

Before understanding Relational calculus in DBMS, we need to understand Procedural

Language and Declarative Langauge.

1. Procedural Language - Those Languages which clearly define how to get the required results
from the Database are called Procedural Language. Relational algebra is a Procedural Language.

2. Declarative Language - Those Language that only cares about What to get from the database

without getting into how to get the results are called Declarative Language. Relational
Calculus is a Declarative Language.

So Relational Calculus is a Declarative Language that uses Predicate Logic or First-Order Logic

to determine the results from Database.

Types of Relational Calculus in DBMS

Relational Calculus is of Two Types:

1. Tuple Relational Calculus (TRC)
2. Domain Relational Calculus (DRC)

Tuple Relational Calculus (TRC)

Tuple Relational Calculus in DBMS uses a tuple variable (t) that goes to each row of the table

and checks if the predicate is true or false for the given row. Depending on the given predicate

condition, it returns the row or part of the row.

The Tuple Relational Calculus expression Syntax

Where t is the tuple variable that runs over every Row, and P(t) is the predicate logic expression

or condition.

Let's take an example of a Customer Database and try to see how TRC expressions work.

Customer Table

Customer_id Name Zip code

1 Rohit 12345

2 Rahul 13245

3 Rohit 56789

4 Amit 12345.

Example 1: Write a TRC query to get all the data of customers whose zip code is 12345.

TRC Query: {t \| t ∈ Customer ∧ t.Zipcode = 12345} or TRC Query: {t \| Customer(t) ∧

t[Zipcode] = 12345 }

Workflow of query - The tuple variable "t" will go through every tuple of the Customer table.

Each row will check whether the Cust_Zipcode is 12345 or not and only return those rows that

satisfies the Predicate expression condition.

The TRC expression above can be read as "Return all the tuple which belongs to the

Customer Table and whose Zipcode is equal to 12345."

Result of the TRC expression above:

Customer_id Name Zip code

1 Rohit 12345

4. Amit 12345

Example 2: Write a TRC query to get the customer id of all the Customers.

TRC query: { t \| ∃s (s ∈ Customer ∧ s.Customer_id = t.customer_id) }

Result of the TRC Query:

Customer_id

1

2

3

4

Domain Relational Calculus (DRC)

Domain Relational Calculus uses domain Variables to get the column values required from the

database based on the predicate expression or condition.

The Domain realtional calculus expression syntax:

where,

<x1,x2,x3,x4...> are domain variables used to get the column values required,

and P(x1,x2,x3...) is predicate expression or condition.

Let's take the example of Customer Database and try to understand DRC queries with some

examples.

Customer Table

Customer_id Name Zip code

1 Rohit 12345

2 Rahul 13245

3 Rohit 56789

4 Amit 12345

Example 1: Write a DRC query to get the data of all customers with Zip code 12345.

DRC query: {<x1,x2,x3> \| <x1,x2> ∈ Customer ∧ x3 = 12345 }

Workflow of Query: In the above query x1,x2,x3 (ordered) refers to the attribute or column

which we need in the result, and the predicate condition is that the first two domain variables x1

and x2 should be present while matching the condition for each row and the third domain

variable x3 should be equal to 12345.

Result of the DRC query will be:

Customer_id Name Zip code

1 Rohit 12345

4 Amit 12345

Example 2: Write a DRC query to get the customer id of all the customer.

DRC Query: { <x1> \| ∃ x2,x3(<x1,x2,x3> ∈ Customer) }

Result of the above Query will be:

Customer_id

1

2

3

UNIT-II

Functional Dependency

The functional dependency is a relationship that exists between two attributes. It typically exists

between the primary key and non-key attribute within a table.

X → Y

The left side of FD is known as a determinant, the right side of the production is known as a

dependent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because

if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

1. Trivial functional dependency

o A → B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A → A, B → B

Example:

Consider a table with two columns Employee_Id and Employee_Name.

{Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as

Employee_Id is a subset of {Employee_Id, Employee_Name}.

Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial depend

encies too.

2. Non-trivial functional dependency

o A → B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

ID → Name,

Name → DOB

 Armstrong's axioms

o The Armstrong's axioms are the basic inference rule.

o Armstrong's axioms are used to conclude functional dependencies on a relational database.

o The inference rule is a type of assertion. It can apply to a set of FD(functional dependency)

to derive other FD.

o Using the inference rule, we can derive additional functional dependency from the initial

set.

The Functional dependency has 6 types of inference rule:

1. Reflexive Rule (IR1)

In the reflexive rule, if Y is a subset of X, then X determines Y.

If X ⊇ Y then X → Y

Example:

X = {a, b, c, d, e}

Y = {a, b, c}

2. Augmentation Rule (IR2)

The augmentation is also called as a partial dependency. In augmentation, if X determines Y, then

XZ determines YZ for any Z.

If X → Y then XZ → YZ

Example:

For R(ABCD), if A → B then AC → BC

3. Transitive Rule (IR3)

In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z.

If X → Y and Y → Z then X → Z

4. Union Rule (IR4)

Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z.

If X → Y and X → Z then X → YZ

Proof:

 X → Y (given)

 X → Z (given)

X → XY (using IR2 on 1 by augmentation with X. Where XX = X)XY → YZ (using IR2 on 2 by

augmentation with Y)

X → YZ (using IR3 on 3 and 4)

5. Decomposition Rule (IR5)

Decomposition rule is also known as project rule. It is the reverse of union rule.

This Rule says, if X determines Y and Z, then X determines Y and X determines Z separately.

If X → YZ then X → Y and X → Z

Proof:

X → YZ (given)

YZ → Y (using IR1 Rule)

X → Y (using IR3 on 1 and 2)

6. Pseudo transitive Rule (IR6)

In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W.

If X → Y and YZ → W then XZ → W

Proof:

 X → Y (given)

WY → Z (given)

WX → WY (using IR2 on 1 by augmenting with W)

 WX → Z (using IR3 on 3 and 2)

Normalization

A large database defined as a single relation may result in data duplication. This repetition of data

may result in:

o Making relations very large.

o It isn't easy to maintain and update data as it would involve searching many records in

relation.

o Wastage and poor utilization of disk space and resources.

o The likelihood of errors and inconsistencies increases.

So to handle these problems, we should analyze and decompose the relations with redundant data

into smaller, simpler, and well-structured relations that are satisfy desirable properties.

Normalization is a process of decomposing the relations into relations with fewer attributes.

What is Normalization?

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of relations. It is

also used to eliminate undesirable characteristics like Insertion, Update, and Deletion

Anomalies.

o Normalization divides the larger table into smaller and links them using relationships.

o The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate

anomalies leads to data redundancy and can cause data integrity and other problems as the database

grows. Normalization consists of a series of guidelines that helps to guide you in creating a good

database structure.

Data modification anomalies can be categorized into three types:

o Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple into

a relationship due to lack of data.

o Deletion Anomaly: The delete anomaly refers to the situation where the deletion of data

results in the unintended loss of some other important data.

o Updatation Anomaly: The update anomaly is when an update of a single data value

requires multiple rows of data to be updated.

Types of Normal Forms:

Normalization works through a series of stages called Normal forms. The normal forms apply to

individual relations. The relation is said to be in particular normal form if it satisfies constraints.

Following are the various types of Normal forms:

Normal

Form

Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully

functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists.

BCNF A stronger definition of 3NF is known as Boyce Codd's normal form.

4NF A relation will be in 4NF if it is in Boyce Codd's normal form and has no multi-

valued dependency.

5NF A relation is in 5NF. If it is in 4NF and does not contain any join dependency,

joining should be lossless.

Advantages of Normalization

o Normalization helps to minimize data redundancy.

o Greater overall database organization.

o Data consistency within the database.

o Much more flexible database design.

o Enforces the concept of relational integrity.

Disadvantages of Normalization

o You cannot start building the database before knowing what the user needs.

o The performance degrades when normalizing the relations to higher normal forms, i.e.,

4NF, 5NF.

o It is very time-consuming and difficult to normalize relations of a higher degree.

o Careless decomposition may lead to a bad database design, leading to serious problems.

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

First Normal Form (1NF)

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only single-

valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385,

9064738238

UP

20 Harry 8574783832 Bihar

12 Sam 7390372389,

8589830302

Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP

14 John 9064738238 UP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

12 Sam 8589830302 Punja

Second Normal Form (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent on the

primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a

school, a teacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE

25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which is

a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47 35

83 38

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

83 Math

83 Computer

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be in

third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for every non-

trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY

222 Harry 201010 UP Noida

333 Stephan 02228 US Boston

444 Lan 60007 US Chicago

555 Katharine 06389 UK Norwich

666 John 462007 MP Bhopal

Super key in the table above:

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}....so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on

EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on

super key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010

333 Stephan 02228

444 Lan 60007

555 Katharine 06389

666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP EMP_STATE EMP_CITY

201010 UP Noida

02228 US Boston

60007 US Chicago

06389 UK Norwich

462007 MP Bhopal

Boyce Codd normal form (BCNF)

o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one department.

EMPLOYEE table:

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO

264 India Designing D394 283

264 India Testing D394 300

364 UK Stores D283 232

364 UK Developing D283 549

In the above table Functional dependencies are as follows:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY

264 India

264 India

EMP_DEPT table:

EMP_DEPT DEPT_TYPE EMP_DEPT_NO

Designing D394 283

Testing D394 300

Stores D283 232

Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

Functional dependencies:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID

For the second table: EMP_DEPT

For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies is a key.

Fourth normal form (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued

dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then the

relation will be a multi-valued dependency.

Example

STUDENT

STU_ID COURSE HOBBY

21 Computer Dancing

21 Math Singing

34 Chemistry Dancing

74 Biology Cricket

59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity.

Hence, there is no relationship between COURSE and HOBBY.

In the STUDENT relation, a student with STU_ID, 21 contains two

courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi-valued

dependency on STU_ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE

STU_ID COURSE

21 Computer

21 Math

34 Chemistry

74 Biology

59 Physics

STUDENT_HOBBY

STU_ID HOBBY

21 Dancing

21 Singing

34 Dancing

74 Cricket

59 Hockey

Fifth normal form (5NF)

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should

be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order to

avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

Example

SUBJECT LECTURER SEMESTER

Computer Anshika Semester 1

Computer John Semester 1

Math John Semester 1

Math Akash Semester 2

Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't take

Math class for Semester 2. In this case, combination of all these fields required to identify a valid

data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who will be

taking that subject so we leave Lecturer and Subject as NULL. But all three columns together acts

as a primary key, so we can't leave other two columns blank.

So to make the above table into 5NF, we can decompose it into three relations P1, P2 & P3:

P1

SEMESTER SUBJECT

Semester 1 Computer

Semester 1 Math

Semester 1 Chemistry

Semester 2 Math

P2

SUBJECT LECTURER

Computer Anshika

Computer John

Math John

Math Akash

Chemistry Praveen

P3

SEMSTER LECTURER

Semester 1 Anshika

Semester 1 John

Semester 1 John

Semester 2 Akash

Semester 1 Praveen

Multivalued Dependency

o Multivalued dependency occurs when two attributes in a table are independent of each

other but, both depend on a third attribute.

o A multivalued dependency consists of at least two attributes that are dependent on a third

attribute that's why it always requires at least three attributes.

Example: Suppose there is a bike manufacturer company which produces two colors(white and

black) of each model every year.

BIKE_MODEL MANUF_YEAR COLOR

M2011 2008 White

M2001 2008 Black

M3001 2013 White

M3001 2013 Black

M4006 2017 White

M4006 2017 Black

Here columns COLOR and MANUF_YEAR are dependent on BIKE_MODEL and independent

of each other.

In this case, these two columns can be called as multivalued dependent on BIKE_MODEL. The

representation of these dependencies is shown below:

1. BIKE_MODEL → → MANUF_YEAR

2. BIKE_MODEL → → COLOR

This can be read as "BIKE_MODEL multidetermined MANUF_YEAR" and "BIKE_MODEL

multidetermined COLOR".

Closure of an Attribute

Closure of an Attribute: Closure of an Attribute can be defined as a set of attributes that can be

functionally determined from it.

OR

Closure of a set F of FDs is the set F+ of all FDs that can be inferred from F

Closure of a set of attributes X concerning F is the set X+ of all attributes that are functionally

determined by X

Pseudocode to find Closure of an Attribute?

Determine X+, the closure of X under functional dependency set F

X Closure : = will contain X itself;

Repeat the process as:

old X Closure : = X Closure;

for each functional dependency P → Q in FD set do

if X Closure is subset of P then X Closure := X Closure U Q ;

Repeat until (X Closure = old X Closure);

Algorithm of Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R.

X+ := X;

repeat

 oldX+ := X+ ;

 for each functional dependency Y → Z in F do

 if X+ ⊇ Y then X+ := X+ ∪ Z;

 until (X+ = oldX+);

Lossless Decomposition

Lossless join decomposition is a decomposition of a relation R into relations R1, and R2 such

that if we perform a natural join of relation R1 and R2, it will return the original relation R.

This is effective in removing redundancy from databases while preserving the original data.

In other words by lossless decomposition, it becomes feasible to reconstruct the relation R from

decomposed tables R1 and R2 by using Joins.

Only 1NF,2NF,3NF, and BCNF are valid for lossless join decomposition.

In Lossless Decomposition, we select the common attribute and the criteria for selecting a

common attribute is that the common attribute must be a candidate key or super key in either

relation R1, R2, or both.

Decomposition of a relation R into R1 and R2 is a lossless-join decomposition if at least one of

the following functional dependencies is in F+ (Closure of functional dependencies)

Example of Lossless Decomposition

— Employee (Employee_Id, Ename, Salary, Department_Id, Dname)

Can be decomposed using lossless decomposition as,

— Employee_desc (Employee_Id, Ename, Salary, Department_Id)

— Department_desc (Department_Id, Dname)

Alternatively the lossy decomposition would be as joining these tables is not possible so not

possible to get back original data.

– Employee_desc (Employee_Id, Ename, Salary)

– Department_desc (Department_Id, Dname)

R1 ∩ R2 → R1

 OR

R1 ∩ R2 → R2

In a database management system (DBMS), a lossless decomposition is a process of

decomposing a relation schema into multiple relations in such a way that it preserves the

information contained in the original relation. Specifically, a lossless decomposition is one in

which the original relation can be reconstructed by joining the decomposed relations.

To achieve lossless decomposition, a set of conditions known as Armstrong’s axioms can be

used. These conditions ensure that the decomposed relations will retain all the information

present in the original relation. Specifically, the two most important axioms for lossless

decomposition are the reflexivity and the decomposition axiom.

The reflexivity axiom states that if a set of attributes is a subset of another set of attributes, then

the larger set of attributes can be inferred from the smaller set. The decomposition axiom states

that if a relation R can be decomposed into two relations R1 and R2, then the original relation

R can be reconstructed by taking the natural join of R1 and R2.

There are several algorithms available for performing lossless decomposition in DBMS, such

as the BCNF (Boyce-Codd Normal Form) decomposition and the 3NF (Third Normal

Form) decomposition. These algorithms use a set of rules to decompose a relation into multiple

relations while ensuring that the original relation can be reconstructed without any loss of

information.

Advantages of Lossless Decomposition

1. Reduced Data Redundancy: Lossless decomposition helps in reducing the data

redundancy that exists in the original relation. This helps in improving the efficiency of the

database system by reducing storage requirements and improving query performance.

2. Maintenance and Updates: Lossless decomposition makes it easier to maintain and

update the database since it allows for more granular control over the data.

https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/
https://www.geeksforgeeks.org/boyce-codd-normal-form-bcnf/
https://www.geeksforgeeks.org/third-normal-form-3nf/
https://www.geeksforgeeks.org/third-normal-form-3nf/

3. Improved Data Integrity: Decomposing a relation into smaller relations can help to

improve data integrity by ensuring that each relation contains only data that is relevant to

that relation. This can help to reduce data inconsistencies and errors.

4. Improved Flexibility: Lossless decomposition can improve the flexibility of the database

system by allowing for easier modification of the schema.

Disadvantages of Lossless Decomposition

• Increased Complexity: Lossless decomposition can increase the complexity of the

database system, making it harder to understand and manage.

• Increased Processing Overhead: The process of decomposing a relation into smaller

relations can result in increased processing overhead. This can lead to slower query

performance and reduced efficiency.

• Join Operations: Lossless decomposition may require additional join operations to

retrieve data from the decomposed relations. This can also result in slower query

performance.

• Costly: Decomposing relations can be costly, especially if the database is large and

complex. This can require additional resources, such as hardware and personnel.

Dependency Preserving Decomposition

If we decompose a relation R into relations R1 and R2, All dependencies of R either must be a

part of R1 or R2 or must be derivable from a combination of functional dependency of R1 and

R2. For Example, A relation R (A, B, C, D) with FD set{A->BC} is decomposed into R1(ABC)

and R2(AD) which is dependency preserving because FD A->BC is a part of R1(ABC).

Advantages of Lossless Join and Dependency Preserving Decomposition

• Improved Data Integrity: Lossless join and dependency preserving decomposition help

to maintain the data integrity of the original relation by ensuring that all dependencies are

preserved.

• Reduced Data Redundancy: These techniques help to reduce data redundancy by

breaking down a relation into smaller, more manageable relations.

• Improved Query Performance: By breaking down a relation into smaller, more focused

relations, query performance can be improved.

• Easier Maintenance and Updates: The smaller, more focused relations are easier to

maintain and update than the original relation, making it easier to modify the database

schema and update the data.

• Better Flexibility: Lossless join and dependency preserving decomposition can improve

the flexibility of the database system by allowing for easier modification of the schema.

Disadvantages of Lossless Join and Dependency Preserving Decomposition

• Increased Complexity: Lossless join and dependency-preserving decomposition can

increase the complexity of the database system, making it harder to understand and manage.

• Costly: Decomposing relations can be costly, especially if the database is large and

complex. This can require additional resources, such as hardware and personnel.

https://www.geeksforgeeks.org/types-of-functional-dependencies-in-dbms/
https://www.geeksforgeeks.org/the-problem-of-redundancy-in-database/

• Reduced Performance: Although query performance can be improved in some cases, in

others, lossless join and dependency-preserving decomposition can result in reduced query

performance due to the need for additional join operations.

• Limited Scalability: These techniques may not scale well in larger databases, as the

number of smaller, focused relations can become unwieldy.

Unit 3

Query Processing

Query Processing is the activity performed in extracting data from the database. In query

processing, it takes various steps for fetching the data from the database. The steps involved are:

1. Parsing and translation

2. Optimization

3. Evaluation

The query processing works in the following way:

Parsing and Translation

As query processing includes certain activities for data retrieval. Initially, the given user queries

get translated in high-level database languages such as SQL. It gets translated into expressions that

can be further used at the physical level of the file system. After this, the actual evaluation of the

queries and a variety of query -optimizing transformations and takes place. Thus before processing

a query, a computer system needs to translate the query into a human-readable and understandable

language. Consequently, SQL or Structured Query Language is the best suitable choice for

humans. But, it is not perfectly suitable for the internal representation of the query to the system.

Relational algebra is well suited for the internal representation of a query. The translation process

in query processing is similar to the parser of a query. When a user executes any query, for

generating the internal form of the query, the parser in the system checks the syntax of the query,

verifies the name of the relation in the database, the tuple, and finally the required attribute value.

The parser creates a tree of the query, known as 'parse-tree.' Further, translate it into the form of

relational algebra. With this, it evenly replaces all the use of the views when used in the query.

Thus, we can understand the working of a query processing in the below-described diagram:

Suppose a user executes a query. As we have learned that there are various methods of extracting

the data from the database. In SQL, a user wants to fetch the records of the employees whose salary

is greater than or equal to 10000. For doing this, the following query is undertaken:

select emp_name from Employee where salary>10000;

Thus, to make the system understand the user query, it needs to be translated in the form of

relational algebra. We can bring this query in the relational algebra form as:

o σsalary>10000 (πsalary (Employee))

o πsalary (σsalary>10000 (Employee))

After translating the given query, we can execute each relational algebra operation by using

different algorithms. So, in this way, a query processing begins its working.

Evaluation

For this, with addition to the relational algebra translation, it is required to annotate the translated

relational algebra expression with the instructions used for specifying and evaluating each

operation. Thus, after translating the user query, the system executes a query evaluation plan.

Query Evaluation Plan

o In order to fully evaluate a query, the system needs to construct a query evaluation plan.

o The annotations in the evaluation plan may refer to the algorithms to be used for the

particular index or the specific operations.

o Such relational algebra with annotations is referred to as Evaluation Primitives. The

evaluation primitives carry the instructions needed for the evaluation of the operation.

o Thus, a query evaluation plan defines a sequence of primitive operations used for

evaluating a query. The query evaluation plan is also referred to as the query execution

plan.

o A query execution engine is responsible for generating the output of the given query. It

takes the query execution plan, executes it, and finally makes the output for the user query.

Optimization

o The cost of the query evaluation can vary for different types of queries. Although the

system is responsible for constructing the evaluation plan, the user does need not to write

their query efficiently.

o Usually, a database system generates an efficient query evaluation plan, which minimizes

its cost. This type of task performed by the database system and is known as Query

Optimization.

o For optimizing a query, the query optimizer should have an estimated cost analysis of each

operation. It is because the overall operation cost depends on the memory allocations to

several operations, execution costs, and so on.

Finally, after selecting an evaluation plan, the system evaluates the query and produces the output

of the query.

Evaluation of relational algebra Expressions

 We are already aware of computing and representing the individual relational operations for the

given user query or expression. Here, we will get to know how to compute and evaluate an

expression with multiple operations.

For evaluating an expression that carries multiple operations in it, we can perform the computation

of each operation one by one. However, in the query processing system, we use two methods for

evaluating an expression carrying multiple operations. These methods are:

1. Materialization

2. Pipelining

Let's take a brief discussion of these methods.

Materialization

In this method, the given expression evaluates one relational operation at a time. Also, each

operation is evaluated in an appropriate sequence or order. After evaluating all the operations, the

outputs are materialized in a temporary relation for their subsequent uses. It leads the

materialization method to a disadvantage. The disadvantage is that it needs to construct those

temporary relations for materializing the results of the evaluated operations, respectively. These

temporary relations are written on the disks unless they are small in size.

Pipelining

Pipelining is an alternate method or approach to the materialization method. In pipelining, it

enables us to evaluate each relational operation of the expression simultaneously in a pipeline. In

this approach, after evaluating one operation, its output is passed on to the next operation, and the

chain continues till all the relational operations are evaluated thoroughly. Thus, there is no

requirement of storing a temporary relation in pipelining. Such an advantage of pipelining makes

it a better approach as compared to the approach used in the materialization method. Even the costs

of both approaches can have subsequent differences in-between. But, both approaches perform the

best role in different cases. Thus, both ways are feasible at their place.

We have described and discussed the materialization as well as pipelining method deeply in our

next sections one by one.

Selection Operation in Query Processing

Generally, the selection operation is performed by the file scan. File scans are the search

algorithms that are used for locating and accessing the data. It is the lowest-level operator used in

query processing.

In RDBMS or relational database systems, the file scan reads a relation only if the whole relation

is stored in one file only. When the selection operation is performed on a relation whose tuples are

stored in one file, it uses the following algorithms:

o Linear Search: In a linear search, the system scans each record to test whether satisfying

the given selection condition. For accessing the first block of a file, it needs an initial seek.

If the blocks in the file are not stored in contiguous order, then it needs some extra seeks.

However, linear search is the slowest algorithm used for searching, but it is applicable in

all types of cases. This algorithm does not care about the nature of selection, availability

of indices, or the file sequence. But other algorithms are not applicable in all types of cases.

o Index-based search: In that algorithms are known as Index scans. Such index structures

are known as access paths. These paths allow locating and accessing the data in the file.

There are following algorithms that use the index in query processing:

o Primary index, equality on a key: We use the index to retrieve a single record that

satisfies the equality condition for making the selection. The equality comparison is

performed on the key attribute carrying a primary key.

o Primary index, equality on nonkey: The difference between equality on key and nonkey

is that in this, we can fetch multiple records. We can fetch multiple records through a

primary key when the selection criteria specify the equality comparison on a nonkey.

o Secondary index, equality on key or nonkey: The selection that specifies an equality

condition can use the secondary index. Using secondary index strategy, we can either

retrieve a single record when equality is on key or multiple records when the equality

condition is on nonkey. When retrieving a single record, the time cost is equal to the

primary index. In the case of multiple records, they may reside on different blocks. This

results in one I/O operation per fetched record, and each I/O operation requires a seek and

a block transfer.

Join algorithms in Database

There are two algorithms to compute natural join and conditional join of two relations in

database: Nested loop join, and Block nested loop join.

To understand these algorithms we will assume there are two relations, relation R and relation

S. Relation R has TR tuples and occupies BR blocks. Relation S has TS tuples and occupies

BS blocks. We will also assume relation R is the outer relation and S is the inner relation.

Nested Loop Join

In the nested loop join algorithm, for each tuple in outer relation, we have to compare it with

all the tuples in the inner relation then only the next tuple of outer relation is considered. All

pairs of tuples which satisfy the condition are added in the result of the join.

for each tuple tR in TR do

 for each tuple ts in Ts do

 compare (tR, ts) if they satisfies the condition

 add them in the result of the join

 end

end

This algorithm is called nested join because it consists of nested for loops.

 Pause

Let’s see some cases to understand the performance of this algorithm,

Case-1: Assume only two blocks of main memory are available to store blocks from R and S

relation.

For each tuple in relation to R, we have to transfer all blocks of relation S and each block of

relation R should be transferred only once.

So, the total block transfers needed = TR * BS + BR

Block Nested Loop Join:

In block nested loop join, for a block of outer relation, all the tuples in that block are compared

with all the tuples of the inner relation, then only the next block of outer relation is considered.

All pairs of tuples which satisfy the condition are added in the result of the join.

for each block bR in BR do

 for each block bs in BS do

 for each tuple tR in TR do

 for each tuple ts in Ts do

 compare (tR, ts) if they satisfies the condition

 add them in the result of the join

 end

 end

 end

end

Let’s look at some similar cases as nested loop join,

Case-1: Assume only two blocks of main memory are available to store blocks from R and S

relation.

For each block of relation R, we have to transfer all blocks of relation S and each block of

relation R should be transferred only once.

So, the total block transfers needed = BR+ BR * BS

Heuristic optimization in DBMS

Cost-based optimization is expensive. Heuristics are used to reduce the number of choices that

must be made in a cost-based approach.

Rules

Heuristic optimization transforms the expression-tree by using a set of rules which improve the

performance. These rules are as follows −

• Perform the SELECTION process foremost in the query. This should be the first action for

any SQL table. By doing so, we can decrease the number of records required in the query,

rather than using all the tables during the query.

• Perform all the projection as soon as achievable in the query. Somewhat like a selection

but this method helps in decreasing the number of columns in the query.

• Perform the most restrictive joins and selection operations. What this means is that select

only those sets of tables and/or views which will result in a relatively lesser number of

records and are extremely necessary in the query. Obviously any query will execute better

when tables with few records are joined.

Some systems use only heuristics and the others combine heuristics with partial cost-based

optimization.

Steps in heuristic optimization

Let’s see the steps involve in heuristic optimization, which are explained below −

• Deconstruct the conjunctive selections into a sequence of single selection operations.

• Move the selection operations down the query tree for the earliest possible execution.

• First execute those selections and join operations which will produce smallest relations.

• Replace the cartesian product operation followed by selection operation with join

operation.

• Deconstructive and move the tree down as far as possible.

• Identify those subtrees whose operations are pipelined.

Materialized View

Materialized views are also known as virtual tables, but the result of the query expression is saved

in physical memory. The query definition is also stored in the database. We can also consider them

a Physical copy of the original base tables. It is primarily used in the context of warehousing of

data. There is no standard view to define materialized view in SQL. However, few database

management systems offer custom extensions to use materialized views. Unlike the normal view,

they are not updated each time they are used. Instead, we need to update it manually or with the

help of the trigger. The process of updating the Materialized view is known as Materialized View

Maintenance.

It stores the result in the physical memory, it responds faster than the normal view because the

normal view is created whenever we run the query. It is mainly used for summarizing, pre-

computing, replicating and distributing data, etc.

Let's understand the syntax of the materialized view.

1. Create Materialized View view_name

2. Build [clause] Refresh [type]

3. ON [trigger]

4. As <query expression>

In the above syntax, the Build clause decides when to populate the materialized view. It contains

two options -

o IMMEDIATE - It populate the materialized view immediately.

o DEFFERED - Need to refresh materialized view manually at least once.

Refresh type define the how to update the materialized view. There are three options -

o FAST - The materialized view logs is required against the source table in advance, without

logs, the creation fails. A fast refresh is attempted. A fast refresh is attempted.

o COMPLETE - The table segment supporting the materialized view is truncated and

repopulated completely using the associated query.

o FORCE - The materialized logs is not required. A fast refresh is attempted.

On trigger defines when to update the materialized view. The refresh can be triggered in the two

ways -

o ON COMMIT - When the data change is committed in one of the dependent tables. The

refresh is triggered.

o ON DEMAND - A refresh happens when we schedule task or a manual request.

