B.Tech (Fourth Semester Computer Science & Engineering (C.B.C.S)) End Semester Examination Summer – 2023

Course Name: Theoretical Foundation of Computer Science

Course Code: BCS2405	ADS/ EFV5738I/3101
Time: 3 Hours]	[Max.Marks: 60

Instructions to Candidates:

- 1. All questions carry marks as indicated.
- 2. All the sub- questions (a, b, c, d, and e) of Que.1 in Section A are compulsory.
- 3. Solve any two sub-questions in Que. 2 to Que.6 in Section B.
- 4. Assume suitable data wherever necessary.
- 5. Use of non-programmable calculator is permitted.

Section – A

Describe Pigeon Hole Principle.	2 (CO1)
Discuss the purpose of pumping lemma? Explain it with example.	2 (CO2)
Show that the context free languages are closed under the property of closure and union.	2 (CO3)
Write a short note on universal Turing machine.	2 (CO4)
Write short note on undecidability.	2 (CO5)
Section – B	
Explain Proof by Induction and Contradiction with example.	5 (CO1)
Give Mathematical definition of Finite Automata.	5 (CO1)
Construct DFA for L= $\{x \in \{a, b\}^* : x _a = odd and x _b = even\}.$	5 (CO1)
Construct Moore Machine to determine residue mod 4 for each binary stringtreated as binary integer.	5 (CO2)
Construct DFA for given Regular Expression, $RE=(0+1)(01+10)0^*$.	5 (CO2)
Find regular grammar that generate the following languageL(aa*(ab+a)*).	5 (CO2)
) Let G be the grammar whose productions are	
$S \longrightarrow aB \mid bA A \longrightarrow a \mid aS \mid bAA \qquad B \longrightarrow b \mid bS \mid Abb$	
Find LMD, RMD and Parse Tree for the string "aaabbabbba".	
Eliminate epsilon production from the given grammar	5 (CO3)
$S \rightarrow aSB aA bB;$ $A \rightarrow aA \epsilon;$ $B \rightarrow bB \epsilon$	
	Describe Pigeon Hole Principle. Discuss the purpose of pumping lemma? Explain it with example. Show that the context free languages are closed under the property of closureand union. Write a short note on universal Turing machine. Write short note on undecidability. Section – B Explain Proof by Induction and Contradiction with example. Give Mathematical definition of Finite Automata. Construct DFA for $L = \{x \in \{a, b\}^* : x _a = \text{odd and } x _b = \text{even}\}.$ Construct Moore Machine to determine residue mod 4 for each binary stringtreated as binary integer. Construct DFA for given Regular Expression, RE=(0+1)(01+10)0*. Find regular grammar that generate the following languageL(aa*(ab+a)*). Let G be the grammar whose productions are $S \rightarrow aB bA A \rightarrow a aS bAA B \rightarrow b bS Abb$ Find LMD, RMD and Parse Tree for the string "aaabbabbba". Eliminate epsilon production from the given grammar $S \rightarrow aSB aA bB; A \rightarrow a \epsilon; B \rightarrow bB \epsilon$

c) Give formal definition of PDA with block diagram. Explain it. 5 (CO3)

Que.5

a)	Design T.M. for language to find 2's complement of a binary number.	5 (CO4)
b)	List and explain the variants of a Turing machine.	5 (CO4)
c)	Design a Turing Machine for following language.	5 (CO4)
	$L = \{ a^{n} b^{n} c^{n} n \ge 1 \}$	

Que.6

a)	Give Ackermann's function and obtain solution for A (2, 5) and A (3,3).	5 (CO5)
b)	Explain the properties of recursive enumerable language.	5 (CO5)
c)	Describe is PCP and modified PCP.	5 (CO5)

ADS/ EFV5738I/3101