B.Tech (Fourth Semester Computer Science & Engineering (C.B.C.S)) End Semester Examination Summer – 2023

Course Name: Discrete Mathematics and Graph Theory

	course manie.	Discrete mantemates	ana Graph	Incory
Course Code: BC	CS2401			DMT/EFV5734J/3082

Time: 3 Hours]	[Max.Marks: 60

Instructions to Candidates:

- 1. All questions carry marks as indicated.
- 2. All the sub- questions (a, b, c, d, and e) of Que.1 in Section A are compulsory.
- 3. Solve any two sub-questions in Que. 2 to Que.6 in Section B.
- 4. Assume suitable data wherever necessary.
- 5. Use of non-programmable calculator is permitted.

Section – A

Que.1

a)	Prove that $A \cap A = A$.		2 (CO1)
b)	How many 7 letter words can be formed using the word 'Benzene'.		2 (CO2)
c)	Prove that in a distributive lattice if the complement exists then it is unique.		2 (CO3)
d)	Find the measure of fuzziness for the fuzzy set $A = \frac{0.2}{x1} + \frac{0.4}{x2}$.		2 (CO4)
e)	Design the algebraic expression using binary tree. Also draw the venn diagrams.		2 (CO5)
	i)	X*Y	
	ii)	(a*b)/(c+d)	
		Section – B	
Que.2			
a)	Find the	relation matrix and draw the graph for the relation	5 (CO1)
	$R = \{(1,2), (2,3), (3,4), (2,1)\},\$		
	Also find the transitive closure of R.		
b)	Prove that	at $A \cap (B-C) = (A \cap B) - (A \cap C)$.	5 (CO1)
c)	Prove by Mathematical induction that the sum of cube of three consecutive integers		5 (CO1)
	are divisi	ible by 9.	
O ma 2			
Que.3	Ein d the	wining work and fate lants in a close to be suggethed from out of them and	5(CO2)
a)		minimum number of students in a class to be sure that four out of them are he same month.	5 (CO2)
•			5 (000)
b)	Solve the	e recurrence relation	5 (CO2)

 $a_{n=}a_{n-1}+2$, $n\geq 2$, $a_{0=}3$.

c) Find the closed form of generating function for each of following 5 (CO2)
 Sequences
 A) 0,0,1,1,1,...

B) 1,0,-1,0,1,0,-1,0,...

Que.4

a)	Prove that fourth roots of unity form a group under multiplication.	5 (CO3)
b)	Show that the lattice (S_n,D) n=30 is a complemented lattice.	5 (CO3)

- c) Show that if R is a ring , for all $a, b \in R$ then
 - i) $\mathbf{a} \cdot \mathbf{0} = \mathbf{0} = \mathbf{0} \cdot \mathbf{a}$
 - ii) $\mathbf{a} \cdot (\mathbf{-b}) = (\mathbf{-a}) \cdot \mathbf{b} = \mathbf{-}(\mathbf{a} \cdot \mathbf{b}).$

iii)
$$(-a) \cdot (-b) = a \cdot b$$

Que.5

a)	Find Bounded sum and Bounded Difference for the fuzzy sets A= $\frac{0.2}{x_1} + \frac{0.5}{x_2} + \frac{0.6}{x_3}$	5 (CO4)
	and $B = \frac{0.1}{x1} + \frac{0.5}{x2} + \frac{0.6}{x3}$.	
b)	Illustrate the matrix and draw the respective graph for following, Let	5 (CO4)
	A= $\{a1,a2,a3\}$ and B= $\{b_1,b_2,b_3,b_4\}$. Let R be the relation from A to B is given	
	$by \frac{0.1}{(a1,b3)} + \frac{0.8}{(a1,b4)} + \frac{0.8}{(a2,b2)} + \frac{0.1}{(a3,b1)} + \frac{0.8}{(a3,b2)} + \frac{1}{(a3,b3)} + \frac{0.8}{(a3,b4)}$	

c) Find fuzzy relation R=A×B, S=B×C if fuzzy sets 5 (CO4)

$$A = \{\frac{0.3}{30} + \frac{0.7}{60} + \frac{1}{100}\}, B = \{\frac{0.2}{20} + \frac{0.4}{40} + \frac{0.6}{60}\} \text{ and } C = \{\frac{0.3}{50} + \frac{0.6}{100}\}.$$

Que.6

- a) Design a tree for the relation $R = \{(1,2), (1,3), (1,4), (2,5), (4,6), (4,7)\}$ on a set 5 (CO5) A= $\{1,2,3,4,5,6,7\}$. Also give the corresponding binary tree.
- **b)** Find the minimal spanning tree of the following graph using Prim's algorithm 5 (CO5)

c) Find the node base of the following digraph.

5 (CO5)

DMT/EFV5734J/3082

5 (CO3)