B. Tech (Third Semester Computer Science & Engineering (C.B.C.S)) Winter – 2022 End Semester Examination Course Name: Fundamentals of Digital Circuits & Microprocessor Course Code: BCS2302

[Max. Marks: 60

Time: 3 Hours]

Instructions to Candidates:

- 1. All questions carry marks as indicated.
- 2. All the sub- questions (a, b, c, d, and e) of Que.1 in Section A are compulsory.
- 3. Solve any two sub-questions in Que. 2 to Que.6 in Section B.
- 4. Assume suitable data wherever necessary.
- 5. Use of non-programmable calculator is permitted.

Section A

Que. 1.	(a)	Convert hexadecimal number (A0F9.0EB) 16 into decimal form.	2	(CO1)
	(b)	Convert the Boolean expression Y= AB+A B'C +BC' into	2	(CO2)
	star	ndard Boolean SOP expression.		
	(c)	Distinguish between combinational and sequential circuits.	2	(CO3)
	(d)	Illustrate race around condition for J-K flip flop.	2	(CO4)
	(e)	Write different features of 16-bit Microprocessor 8086.	2	(CO5)

Section **B**

Que. 2.	(a) Explain and verify De-Morgan's theorem using suitable example.	5	(CO1)
	(b) Write short notes with example:i) XS-3 codeii) Gray code	5	(CO1)

(c) Modify following Boolean expression with reduced number of mean 5 (CO1) terms.

1)
$$Y = A[B+C'(AB+AC')']$$

ii) $Y = [A+(BC)']'. [(AB)'+ABC]$

Que. 3. (a) Determine reduced SOP expression for the following and implement 5 (CO2) using logic gates, $F(A, B, C, D) = \sum m(5, 6, 7, 12, 13) + d(4, 9, 14, 15)$

(b) Write the following Boolean expression in standard SOP and canonic 5 (CO2) form Y = A'B'D + A'B + ABC + ACD' (c) Determine reduced POS expression for the following and implement 5 (CO2) using logic gates,

$$F(A, B, C, D,) = \prod M(0, 1, 4, 5, 7, 10, 11, 13, 14, 15)$$

Que.4	(a)	Design Full adder using XOR and AOI logic gates.	5	(CO3)
	(b)	Show that Full subtractor can be designed using two half subtractor.	5	(CO3)
	(c)	Design 8:1 MUX using 4:1 MUX.	5	(CO3)

Que. 5.	(a) Convert the S-R flip flop into J-K flip flop.	5	(CO4)
	(b) Design and implement using JK flip flop negative edge triggered, 3-b	it 5	(CO4)
	asynchronous up counter.		
	(c) Classify different types of RAM and explain each in brief.	5	(CO4)

Que. 6.	(a) Discuss on functioning of ALU and various registers of 8085	5	(CO5)
	Microprocessor.		
	(b) Demonstrate different addressing modes of 8085 with one example for	5	(CO5)
	each.		
	(c) Sketch memory read timing diagram of 8085 Microprocessor and	5	(CO5)
	summarize sequence of operations in it.		

