
Definition

In software engineering, a software design pattern is a general reusable solution to a

commonly occurring problem within a given context in software design. It is not a

finished design that can be transformed directly into source or machine code.

A pattern has four essential elements:

1. Pattern Name

2. Problem

3. Solution

4. Consequence

1. The pattern name is a handle we can use to describe a design problem, its solutions,

and consequences in a word or two. Naming a pattern immediately increases our

design vocabulary. It lets us design at a higher level of abstraction. Having a

vocabulary for patterns lets us talk about them with our colleagues, in our

documentation, and even to ourselves. It makes it easier to think about designs and to

communicate them and their trade-offs to others. Finding good names has been one of

the hardest parts of developing our catalog.

2. The problem describes when to apply the pattern. It explains the problem and its

context. It might describe specific design problems such as how to represent

algorithms as objects. It might describe class or object structures that are symptomatic

of an inflexible design. Sometimes the problem will include a list of conditions that

must be met before it makes sense to apply the pattern.

3. The solution describes the elements that make up the design, their relationships,

responsibilities, and collaborations. The solution doesn’t describe a particular

concrete design or implementation, because a pattern is like a template that can be

applied in many different situations. Instead, the pattern provides an abstract

description of a design problem and how a general arrangement of elements (classes

and objects in our case) solves it.

4. The consequences are the results and trade-offs of applying the pattern. Though

consequences are often unvoiced when we describe design decisions, they are critical

for evaluating design alternatives and for understanding the costs and benefits of

applying the pattern. The consequences for software often concern space and time

trade-offs. They may address language and implementation issues as well. Since reuse

is often a factor in object-oriented design, the consequences of a pattern include its

impact on a system’s flexibility, extensibility, or portability. Listing these

consequences explicitly helps you understand and evaluate them.

The Catalog of Design Patterns

The catalog beginning on contains 23 design patterns. Their names and intents are listed

Abstract Factory

Provide an interface for creating families of related or dependent objects without specifying their
concrete classes.

Adapter

Convert the interface of a class into another interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of incompatible interfaces.

Bridge

Decouple an abstraction from its implementation so that the two can vary independently.

Builder

Separate the construction of a complex object from its representation so that the same construction
process can create different representations.

Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to
handle the request. Chain the receiving objects and pass the request along the chain until an object
handles it.

Command

Encapsulate a request as an object, thereby letting you parameterize clients with different requests,
queue or log requests, and support undoable operations.

Composite

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients
treat individual objects and compositions of objects uniformly.

Decorator

Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative
to sub classing for extending functionality.

Facade

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level
interface that makes the subsystem easier to use.

Factory Method

Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.

Flyweight

Use sharing to support large numbers of fine-grained objects efficiently.

Interpreter

Given a language, define a representation for its grammar along with an interpreter that uses the
representation to interpret sentences in the language.

Iterator

Provide a way to access the elements of an aggregate object sequentially without exposing its
underlying representation.

Mediator

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling
by keeping objects from referring to each other explicitly, and it lets you vary their interaction
independently.

Memento

Without violating encapsulation, capture and externalize an object’s internal state so that the object
can be restored to this state later.

Observer

Define a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically.

Prototype

Specify the kinds of objects to create using a prototypical instance, and create new objects by
copying this prototype.

Proxy

Provide a surrogate or placeholder for another object to control access to it.

Singleton

Ensure a class only has one instance, and provide a global point of access to it.

State

Allow an object to alter its behaviour when its internal state changes. The object will appear to
change its class.

Strategy

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that use it.

Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm without changing the algorithm’s
structure.

Visitor

Represent an operation to be performed on the elements of an object structure. Visitor lets you
define a new operation without changing the classes of the elements on which it operates.

Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there are many design
patterns, we need a way to organize them. This section classifies design patterns so that we can
refer to families of related patterns. The classification helps you learn the patterns in the catalog
faster, and it can direct efforts to find new patterns as well.

We classify design patterns by two criteria. The first criterion, called purpose, reflects what a pattern
does. Patterns can have creational, structural, or behavioural purpose. Creational patterns concern
the process of object creation. Structural patterns deal with the composition of classes or objects.
Behavioural patterns characterize the ways in which classes or objects interact and distribute
responsibility.

Organization of Design Pattern

The second criterion, called scope, specifies whether the pattern applies primarily to classes

or to objects. Class patterns deal with relationships between classes and their subclasses. These

relationships are established through inheritance, so they are static—fixed at compile-time. Object

patterns deal with object relationships, which can be changed at run-time and are more dynamic.

Almost all patterns use inheritance to some extent. So the only patterns labelled "class patterns" are

those that focus on class relationships. Note that most patterns are in the Object scope.

Advantage of design pattern:

1. They are reusable in multiple projects.

2. They provide the solutions that help to define the system architecture.

3. They capture the software engineering experiences.

4. They provide transparency to the design of an application.

5. They are well-proved and testified solutions since they have been built upon the knowledge
and experience of expert software developers.

6. Designs patterns donate guarantee an absolute solution to a problem. They provide clarity
to the system architecture and the possibility of building a better system.

When should we use the design patterns?

https://faisalsikder.files.wordpress.com/2010/02/design-pattern-organization.gif

We must use the design patterns during the analysis and requirement phase of SDLC (Software
Development Life Cycle).

Design patterns ease the analysis and requirement phase of SDLC by providing information based on
prior hands-on experiences.

What are different characteristics of design patterns?

A design pattern is a general repeatable solution to a commonly occurring problem in software

design.

 It is a proven solution to problems that keep recurring.

 They are reusable solutions to common problems.

 Design patterns are not frameworks.

 Design patterns are more abstract than frameworks.

 Design pattern cannot be directly implemented.

 Design patterns are more primitive than a framework.

 A design pattern cannot incorporate a framework.

 Patterns may be documented using one of several alternative templates.

 Design patterns can speed up the development process by providing tested, proven

development paradigms.

 Reusing design patterns helps to prevent subtle issues that can cause major problems

and improves code readability for coders and architects familiar with the patterns.

 Patterns allow developers to communicate using well-known, well understood names

for software interactions.

Describing Design Patterns

To reuse the design, we must also record the decisions, alternatives, and trade-offs that led to it.

Concrete examples are important too, because they help you see the design in action. We describe

design patterns using a consistent format. Each pattern is divided into sections according to the

following template. The template lends a uniform structure to the information, making design

patterns easier to learn, compare, and use.

Pattern Name and Classification

http://productdevelop.blogspot.in/2011/04/what-are-different-characteristics-of.html

The pattern's name conveys the essence of the pattern succinctly. A good name is vital, because it

will become part of your design vocabulary.

Intent

A short statement that answers the following questions: What does the design pattern do? What is

its rationale and intent? What particular design issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the class and object structures in the pattern

solve the problem. The scenario will help you understand the more abstract description of the

pattern that follows.

Applicability

What are the situations in which the design pattern can be applied? What are examples of poor

designs that the pattern can address? How can you recognize these situations?

Structure

A graphical representation of the classes in the pattern using a notation based on the Object

Modelling Technique (OMT).We also use interaction diagrams to illustrate sequences of requests

and collaborations between objects. Appendix B describes these notations in detail.

Participants

The classes and/or objects participating in the design pattern and their responsibilities.

Collaborations

How the participants collaborate to carry out their responsibilities.

Consequences

How does the pattern support its objectives? What are the trade-offs and results of using the

pattern? What aspect of system structure does it let you vary independently?

Implementation

What pitfalls, hints, or techniques should you be aware of when implementing the pattern? Are

there language-specific issues?

Sample Code

Code fragments that illustrate how you might implement the pattern in

Known Uses

Examples of the pattern found in real systems. We include at least two examples from different

domains.

Related Patterns

What design patterns are closely related to this one? What are the important differences? With

which other patterns should this one be used?

Solving Design Problems with Design Patterns

1. Finding Appropriate Objects

2. Determining object Granularity

3. Specifying object Interface

4. Designing for Change

1. Finding Appropriate Objects

Object-oriented programs are made up of objects. The hard part about object-oriented

design is decomposing a system into objects. Design patterns can help in this process by

identifying less obvious abstractions and the objects that capture them.

For example, objects that represent a process or algorithm don’t occur in nature, but they

can be crucial in a flexible design. The Strategy pattern describes how to implement families

of algorithms to solve a particular problem. Those algorithms can be interchanged at run-

time, since they are objects now and are subject to polymorphism for example.

2. Determining Object Granularity

Usually, objects vary in size and number. They can represent everything down to the

hardware or all the way up to entire applications.

Design patterns can help to determine proper object granularity. For example, the Facade

pattern describes how to represent complete subsystems as objects, and the Flyweight

pattern describes how to support huge numbers of objects at the finest granularities.

A number of other patterns, such as Composite, describe how to decompose an object into

smaller objects.

3. Specifying Object Interfaces

Design patterns help programmers to define interfaces by identifying their key elements and

the kind of data that get sent across an interface. A design pattern can also tell what not to

put in the interface.

For example, the Memento pattern describes how to encapsulate and save the internal state

of an object so that the object can be restored to that state later. The pattern stipulates that

Memento objects must define two interfaces:

- A restricted one that lets clients hold and copy mementos

- A privileged one that only the original objects can use to store and retrieve state in

the memento.

5. Designing for Change

Designing a system that is robust to changes is a rather hard task to do. However, a design that

doesn’t take changes into account risks major redesigns in the future. Design patterns can

ensure that a system can change in specific ways.

Each design pattern lets some aspect of the system structure vary independently of other

aspects, thereby making a system more robust to a particular kind of change.

Let us look on some examples:

- Creating an object by specifying a class explicitly commits to a particular implementation

instead of a particular interface. That means if we in the future want to change the

object that we use we need also to implement the client code again. On the other hand

using the design patterns, such as Abstract Factory pattern lets you avoid this problem.

- Dependence on hardware and software platform. Clients that know how an object is

represented, stored, located, or implemented might need to be changed when the

object changes. Hiding this information from clients keeps changes from cascading. An

example is again Abstract Factory used to create different look-and-feel components

across different operating systems.

How to Select a Design Pattern

Here are several different approaches to finding the design pattern that's right for your problem:

1. Consider how design patterns solve design problems.

2. Scan Intent sections

3. Study how patterns interrelate.

4. Study patterns of like purpose.

5. Examine a cause of redesign.

6. Consider what should be variable in your design.

Common causes of redesign of an existing system

Accordingly to GoF Design Patterns

 Creating a class by specifying a class explicitly : If need be use creational patterns instead

 Dependence on specific methods : If need be use Chain of Responsibility or Command

pattern instead

 Dependence on Hardware and/or software platforms : Consider using Abstract Factory or

Bridge pattern instead

 Dependence on Object Representation or Implementation : Must program to interface and

not to implementation. Abstract Factory, Bridge, Memento, Proxy etc patterns can help.

 Dependence on specific Algorithms : Consider using Strategy or Visitor pattern

 Extending functionality by subclassing : Prefer composition over inheritance

 Inability to alter classes conveniently : esp. with third party libraries. Adapter, Decorator

and Visitor can help.

Explain the concept of Software reusability used in design pattern

 Software Reliability is the probability of failure-free software operation for a

specified period of time in a specified environment. Software Reliability is also an

important factor affecting system reliability. It differs from hardware reliability in that

it reflects the design perfection, rather than manufacturing perfection. The high

complexity of software is the major contributing factor of Software Reliability

problems.

 Software Reliability is not a function of time - although researchers have come up

with models relating the two. The modeling technique for Software Reliability is

reaching its prosperity, but before using the technique, we must carefully select the

appropriate model that can best suit our case. Measurement in software is still in its

infancy. No good quantitative methods have been developed to represent Software

Reliability without excessive limitations. Various approaches can be used to improve

the reliability of software, however, it is hard to balance development time and budget

with software reliability.

 A good software reliability engineering program, introduced early in the development

cycle, will mitigate these problems by: Preparing program management in advance for

the testing effort and allowing them to plan both schedule and budget to cover the

required testing.

 Continuous review of requirements throughout the life cycle, particularly for handling

of exception conditions. If requirements are incomplete there will be no testing of the

exception conditions.

 SoHaR software reliability engineers are experienced in all the stages and tasks

required in a comprehensive software reliability program. We can support or lead

tasks such as:

1) Reliability Allocation

2) Defining and Analyzing Operational Profiles

3) Test Preparation and Plan

4) Software Reliability Models

 Reliability Allocation:-

Reliability allocation is the task of defining the necessary reliability of a software

item. The item may be part of an integrated hardware/software system, may be a

relatively independent software application, or, more and more rarely, a standalone

software program. In either of these cases our goal is to bring system reliability within

either a strict constraint required by a customer or an internally perceived readiness

level, or optimize reliability within schedule and cost constraints.

SoHaR will assist your organization in the following tasks:

Derive software reliability requirements from overall system reliability requirements.

When possible, depending on lifecycle stage and historical data, estimate schedule

and cost dependence on software reliability goals.

Optimize reliability/schedule/cost based on your constraints and your customer's

requirements,

 Defining and Analyzing Operational Profiles:-

The reliability of software, much more so than the reliability of hardware, is strongly

tied to the operational usage of an application. A software fault may lead to system

failure only if that fault is encountered during operational usage. If a fault is not

accessed in a specific operational mode, it will not cause failures at all. It will cause

failure more often if it is located in code that is part of an often used "operation" (An

operation is defined as a major logical task, usually repeated multiple times within an

hour of application usage). Therefore in software reliability engineering we focus on

the operational profile of the software which weighs the occurrence probabilities of

each operation. Unless safety requirements indicate a modification of this approach

we will prioritize our testing according to this profile.

SoHaR will work with your system and software engineers to complete the following

tasks required to generate a useable operational profile:

Determine the operational modes (high traffic, low traffic, high maintenance, remote

use, local use etc).

Determine operation initiators (components that initiate the operations in the system).

Determine and group "Operations" so that the list includes only operations that are

significantly different from each other (and therefore may present different faults).

Determine occurrence rates for the different operations.

Construct the operational profile based on the individual operation probabilities of

occurrence.

 Test Preparation and Plan:-

Test preparation is a crucial step in the implementation of an effective software

reliability program. A test plan that is based on the operational profile on the one

hand, and subject to the reliability allocation constraints on the other, will be effective

at bringing the program to its reliability goals in the least amount of time and cost.

Software Reliability Engineering is concerned not only with feature and regression

test, but also with load test and performance test. All these should be planned based

on the activities outlined above.

The reliability program will inform and often determine the following test preparation

activities:

Assessing the number of new test cases required for the current release.

New test case allocation among the systems (if multi-system).

New test case allocation for each system among its new operations.

Specifying new test cases

Adding the new test cases to the test cases from previous releases.

 Software Reliability Models:-

Software reliability engineering is often identified with reliability models, in

particular reliability growth models. These, when applied correctly, are successful at

providing guidance to management decisions such as:

Test schedule

Test resource allocation

Time to market

Maintenance resource allocation

This chapter presents a case study in the design of a "What- You-See-Is-What- You-Get"
(or "WYSIWYG") document editor called lexi.1 We'll see how design patterns capture
solutions to design problems in Lexi and applications like it. By the end of this chapter
you will have gained experience with eight patterns, learning them by example.

Figure 2.1 depicts Lexi's user interface. A WYSIWYG representation of the document
occupies the large rectangular area in the center. The document can mix text and
graphics freely in a variety of formatting styles. Surrounding the document are the
usual pull-down menus and scroll bars, plus a collection of page icons for jumping to

a particular page in the document.

2.1

We will examine seven problems in Lexi's design:

1. Document structure. The choice of internal representation for the document affects
nearly every aspect of Lexi's design. All editing, formatting, displaying, and
textual analysis will require traversing the representation. The way we organize
this information will impact the design of the rest of the application.

2. Formatting. How does Lexi actually arrange text and graphics into lines and
columns? What objects are responsible for carrying out different formatting poli-
cies? How do these policies interact with the document's internal representation?

1 Lexi's design is based on Doc, a text editing application developed by Calder ICL92}.

33

34 A CASE S11JDY: DESIGNING A DOCUMENT EDITOR CHAPTER 2

Edit~
Center I

/~~~~~f.~:~ 1
/Rom.n

B_.

ltI!lic

Typewrit.r
SMS serif

-
.16...

Gnu

Gnu

File bol

{

d~

~-

),
/
"

~ .~-

~SU%.4 A sr.tujwus idI.w dI.winl

Uxt <k.nji; .00 kono (holo(UlS> (1..U Chin(t.

tlutus. u.. 16-bit JJS-ttICod(d ..kl4'" font

? .? Mixing te~ Imd gr3phicS

W. (in put illY glyph insid(.(omposiU s1yph; 1

rigUJt 74 shoW5 tht ,,",difi

(odt tNtbU11ds tht vitW

A Sttocil iso. glyph tNt d;'PI'Y' .bitrnop .on HR"

d..W5 .horizonulliN. ond VGl\K rtprt'tnts wrt1<

buM 'P.(t n.. ("",tJ\M:tor p.r,",,"rs for Ru1t .,

whil. «c : g.tc(filt» !: EOP) {

if (c :: '\x\') {

lin. : n.w LRBOX();

+ } .ls. if (!isascii(c» (

+ lin.->app.nd(

n.w charact~r(

tojis(c, g.tc(fil~», k14

)

);
} ~ls~ {

lin~->append(
new character(c, a14)

);

~~[jJ~m~~~[lI~~~

Figure 2.1: Lexi's user interface

Gnu

Gnu

I ..
opn.t1On(wh1(h1S ootshown} s1tnply(.llsdx.w on tl1t
TBBox

Tht (odt thot builds .T.xtVKw is simil.r to tl1t
oJili.,.1 dx.w (odt ..X(.pt thot ins\(.d of (.llinl
fun£tions to dx.w tl1t (h.r.(\(rs. Wt build obj.(ts
thot W111 dx.w tl1tffiS(IYts wh.o.Yt. o.(,s..ry Using
obj((ts solYts tl1t r,dx.w probl.m b« , on1y ohos,
obj.(ts thot li, within tl1t d.mol'd .'lion W111 g.t
dJ.walls Tht prop.mmor do.s oot h.Yt to wziu tl1t
(odt thot dr(;&. wt..t obj'(ts to .,dx.w- thot (odt is

, in tht toolkit (in this ,xompl,. in tl1t impl((0.ntotion

I of tl1t Box dJ.wop...tion} I""',d. tl1t zlyph-b.s.d
impl,mmtotion of T,xtVi,w is .wn simpl.. tlun tl1t
orili.,.1 (odt b.(.us, tl1t prog..mmor o..d on1y drd.r.
..J"tobj,(ts t.. w.nts-t.. do.. not o..d to sp.(ify Jo..
tl1t obj.(ts should in\(..(t

? .? MuItipJe flmt8

B.(.us. W(built T,xtVi.w with glyphs, W((m ..sily
.X\(nd it to .dd f=tiOlUlity thot might otl1trwi.. bf
difficult to impl.""nt ror ,xompl.. rig\U. \shows
.sc..m dump of. Ytrsion of T.xtVKw thot displ~
EUC-.n£odrd J.p.o.s, \(xt Adding this f..tw. to .
\(xt vi(wsu£h.s tht AIhtN T,xt Widg.t \IIOuldr.quir.
.(ompl.\(r.wzi\(H.., W(on1y .dd t\110 lintS of (odr
ril\U. S~hows tl1t (h.ng,

CNrK\(. zlyphs tokf ...optio.'.l ..(ond (onstro£tor
p.n~\(r thot sp.(ifi(s tl1t font to us. whm dx.winl
Fo. ASCII-.l.:odtd \(xt Wt (...\(CNr.(\(.s tt..t us.
tht 8-bit ASCIl-.l.:odrd -.14- font; fo. JlS-_odtd

I<)I

F~, " Mod1t..dJrxt"- ;tIotdispl"!"J"11 jjffi;

SEC110N 2.2 DOCUMENT STRUCTURE

3. Embellishing the user interface. Lexi's user interface includes scroll bars, borders,
and drop shadows that embellish the WYSIWYG document interface. Such em-
bellishments are likely to change as Lexi's user interface evolves. Hence it's im-
portant to be able to add and remove embellishments easily without affecting the
rest of the application.

Supporting multiple look-and-feel standards. Lex.i should adapt easily to different
look-and-feel standards such as Motif and Presentation Manager (PM) without
major modification.

5. Supporting multiple window systems. Different look-3nd-feel standards are usually
implemented on different window systems. Lexi's design should be as indepen-
dent of the window system as possible.

6. User operations. Users control Lexi through various user interfaces, including but-
tons and pull-down menus. The functionality behind these interfaces is scattered
throughout the objects in the application. The challenge here is to provide a uni-
form mechanism both for accessing this scattered functionality and for undoing
its effects. ,

7. Spelling checking and hyphenation. How does lexi support analytical operations
such as checking for misspelled words and determining hyphenation points?
How can we minimize the number of classes we have to modify to add anew

analyticaloperation?

We discuss these design problems in the sections that follow. Each problem has an
associated set of goals plus constraints on how we achieve those goals. We explain the
goals and constraints in detail before proposing a specific solution. The problem and
its solution will illustrate one or more design patterns. The discussion for each problem
will culminate in a brief introduction to the relevant patterns.

2.2 Document Structure

A document is ultimately just an arrangement of basic graphical elements such as char-
acters, lines, polygons, and other shapes. These elements capture the total information
content of the document. Yet an author often views these elements not in graphical
terms but in terms of the document's physical structure--Iines, columns, figures, ta-
bles, and other substructures? In turn, these substructures have substructures of their
own, and so on.

Lexi's user interface should let users manipulate these substructures directly. For ex-
ample, a user should be able to treat a diagram as a unit rather than as a collection of

2 Authors often view the document in terms of its logical structure as well, that is, in terms of sentences,
paragraphs, sections, subsections, and chapters. To keep this example simple, our internal representation
won't store information about the logical structure explicitly. But the design solution we describe works
equally well for representing such information.

36 A CASE STUDY: DESIGNING A DOCUMENT EDITOR CHAPTER 2

individual graphical primitives. The user should be able to refer to a table as a whole,
not as an unstructured mass of text and graphics. That helps make the interface simple
and intuitive. To give Lexi's implementation similar qualities, we11 choose an internal
representation that matches the document's physical structure.

In particular, the internal representation should support the following:

.Maintaining the document's physical structure, that is, the arrangement of text
and graphics into lines, columns, tables, etc.

.Generating and presenting the document visually.

.Mapping positions on the display to elements in the internal representation. This
lets Lexi determine what the user is referring to when he points to something in
the visual representation.

In addition to these goals are some constraints. First, we should treat text and graphics
unifo~ly. The application's interface lets the user embed text within graphics freely
and vice versa. We should avoid treating graphics as a special case of text or text
as a special case of graphics; otherwise we'll end up with redundant formatting and
manipulation mechanisms. One set of mechanisms should suffice for both text and

graphics.

Second, our implementation shouldn't have to distinguish between single elements and
groups of elements in the internal representation. Lexi should be able to treat simple
and complex elements uniformly, thereby allowing arbitrarily complex documents. The
tenth element in line five of column two, for instance, could be a single character or an
intricate diagram with many subelements. As 19n9 as we know this element can draw
itself and specify its dimensions, its complexity has no bearing on how and where it
should appear on the page.

Opposing the second constraint, however, is the need to analyze the text for such things
as spelling errors and potential hyphenation points. Often we don't care whether the
element of a line is a simple or complex object. But sometimes an analysis depends on
the objects being analyzed. It makes little sense, for example, to check the spelling of a
polygon or to hyphenate it. The internal representation's design should take this and
other potentially conflicting constraints into account.

Recursive Composition

A common way to represent hierarchically structured information is through a tech-
nique called recursive composition, which entails building increasingly complex ele-
ments out of simpler ones. Recursive composition gives us a way to compose a docu-
ment out of simple graphical elements. As a first step, we can tile a set of characters
and graphics from left to right to form a line in the document. Then multiple lines
can be arranged to form a column, multiple columns can form a page, and so on (see

Figure 2.2).

DOCUMENT STR UC11JRESEC110N 2.2 37

composite (column)

Figure 2.2: Recursive composition of text and graphics

A CASE sWD¥: DESIGNING A DOCUMENT EDITOR CHAPTER 238

,

children

.
---, I

.I

.II .
, :

.,

...., .I ins;~,9r~~Oat posiIion : i. .
insert into I :

chil9ren at posiIion i: :

..

.,
.

for an c in children .
if c->lntersects(p) retum true :

I
.

.

.

.

.

.

.
.

.:

..

..

I re~~= ~~n~racter ielum lrue i' point p :
intersects Ihis character .

,
.

.,

I W->D~wCharacter(c~

: Icharc

forall c in children
ensure c is positioned

correctly;
c->Draw(w)

Figure 2.4: Partial Glyph class hierarchy

We can represent this physical structure by devoting an object to each important ele-
ment. That includes not just the visible elements like the characters and graphics but
the invisible, structural elements as weIl-the lines and the column. The result is the
object structure shown in Figure 2.3. .

By using an object for each character and graphical element in the document, we
promote flexibility at the finest levels of Lexi's design. We can treat text and graphics
uniformly with respect to how they are drawn, formatted, and embedded within each
other. We can extend Lexi to support new character sets without disturbing other
functionality. Lexi's object structure mimics the document's physical structure.

This approach has two important implications. The first is obvious: The objects need
corresponding classes. The second implication, which may be less obvious, is that these
classes must have compatible interfaces, because we want to treat the objects uniformly.
The way to make interfaces compatible in a language like C++ is to relate the classes

through inheritance.

Glyphs

We'll define a Glyph abstract class for all objects that can appear in a document
structure.3 Its subclasses define both primitive graphical elements (like characters and

3 Calderwas Ihe first to use the term "glyph" in thisconlext ICL90]. Most contemporary document editors
don't use an object for every character, presumably for efficiency reasons. Calder demonstrated that this

SEC110N 2.2 DOCUMENT S1RUCTURE 39

Table 2. Basic glyph interface

images) and structural elements (like rows and columns). Figure 2.4 depicts a represen-
tative part of the Glyph class hierarchy, and Table 2.1 presents the basic glyph interface
in more detail using C++ notation.4

Glyphs have three basic responsibilities. They know (1) how to draw themselves, (2)
what space they OCcupy, and (3) their children and parent.

Glyph subclasses redefine the Draw operation to render themselves onto a window.
They are passed a reference to a window object in the call to Draw. The Window class
defines graphics operations for rendering text and basic shapes in a window on the
screen. A Rectangle subclass of Glyph might redefine Dr aw as follows:

void Rectangle: :Draw (Window* w) {
w->DrawRect(_xO, -yO. _xI, -yI);

where -xO, -yO, -xl, and _yl are data members of Rectangle that define two opposing
corners of the rectangle. DrawRect is the Window operation that makes the rectangle
appear on the screen. .

A parent glyph often needs to know how much space a child glyph occupies, for
example, to arrange it and other glyphs in a line so that none overlaps (as shown in
Figure 2.2). The Bounds operation returns the rectangular area that the glyph occupies.
It returns the opposite corners of the smallest rectangle that contains the glyph. Glyph
subclasses redefine this operation to return the rectangular area in which they draw.

The Intersects operation returns whether a specified point intersects the glyph.
Whenever the user clicks somewhere in the document, Lexi calls this operation to
determine which glyph or glyph structure is under the mouse. The Rectangle class
redefines this operation to compute the intersection of the rectangle and the given

point.

approach is feasible in his thesis ICa1931. Our glyphs are less sophisticated than his in that we have restricted
ours to strict hierarchies for simplicity. Calder's glyphs can be shared to reduce storage costs, thereby forming
directed-acyclic graph structures. We can apply the Flyweight (195) pattern to get the same effect, but we'll
leave that as an exercise for the reader-

.The interface we describe here is purposely minimal to keep the discussion simple. A complete interface
would include operations for managing graphical attributes such as color, font, and coordinate transforma-
nons, plus operations for more sophisticated child management.

A CASE SWDY: DESIGNING A DOCUMENT EDITOR CHAPTER 240

Because glyphs can have children, we need a common interface to add, remove, and
access those children. For example, a Row's children are the glyphs it arranges into a
row. The Insert operation inserts a glyph at a position specified by an integer index.5
The Remove operation removes a specified glyph if it is indeed a child.

The Chi Id operation returns the child (if any) at the given index. Glyphs like Row
that can have children should use Chi Id internally instead of accessing the child data
structure directly. That way you won't have to modify operations like Draw that iterate
through the children when you change the data structure from, say, an array to a linked
list. Similarly, Paren t provides a standard interface to the glyph's parent, if any. Glyphs
in Lexi store a reference to their parent, and their Parent operation simply returns this
reference.

Composite Pattern

Recursive composition is good for more than just documents. We can use it to represent
any potentially complex, hierarchical structure. The Composite (163) pattern captures
the essence of recursive composition in object-oriented terms. Now would be a good
time to turn to that pattern and study it, referring back to this scenario as needed.

Formatting2.3

We've settled on a way to represent the document's physical structure. Next, we need

to figure out how to construct a particular physifal structure, one that corresponds to a

properly formatted document. Representation and formatting are distinct: The ability

to capture the document's physical structure doesn't te]] us how to arrive at a particular
structure. This responsibility rests mostlyon Lexi. It must break text into lines, lines into

columns, and so on, taking into account the user's higher-Ievel desires. For example, the

user might want to vary margin widths, indentation, and tabulation; single or double

space; and probably many other formatting constraints.6 Lexi's formatting algorithm

must take a]] of these into account.

By the way, we']] restrict "formatting" to mean breaking a co]]ection of glyphs into

lines. In fact, we']] use the terms "formatting" and "Iinebreaking" interchangeably.
The techniques we']] discuss apply equa]]y we]] to breaking lines into columns and to

breaking columns into pages-

& An integer index is probably not the best way to specify a glyph's children, depending on the data
structure the glyph uses. If it stores its children in a linked list, then a pointer into the list would be more
efficient. We'll see a better solution to the indeXing problem in Section 2.8, when we discuss document

analysis.6 The user will have even more to say about the document's logical structure--the sentences, paragraphs,
sections, chapters, and so forth. The physical structure is less interesting by comparison. Most people don't
care where the linebreaks in a paragraph occur as long as the paragraph is formatted properly. The same
is true for formatting colunms and pages. Thus users end up specifying only high-Ievel constraints on the
physical structure, leaving Lexi to do the hard work of satisfying them.

SEC110N 2.3 FORMAnJNG 41

Table 2.2: Basic compositor interface

Encapsulating the Formatting Algorithm

The formatting process, with all its constraints and details, isn't easy to automate.
There are many approaches to the problem, and people have come up with a variety
of formatting algorithms with different strengths and weaknesses. Because Lexi is a
WYSIWYG editor, an important trade-off to consider is the balance between formatting
quality and formatting speed. We want generally good response from the editor with-
out sacrificing how good the document looks. This trade-off is subject to many factors,
not all of which can be as<,'ertained at compile-time. For example, the user might tol-
erate slightly slower response in exchange for better formatting. That trade-off might
make an entirely different formatting algorithm more appropriate than the current
one. Another, more implementation-driven trade-off balances formatting speed and
storage requirements: It may be possible to decrease formatting time by caching more
information.

Because formatting algorithms tend to be complex, it's also desirable to keep them well-
contained or-better yet--completely independent of the document structure. Ideally
we could add anew kind of Glyph subclass without regard to the formatting algorithm.
Conversely, adding anew formatting algorithm shouldn't require modifying existing
glyphs.
These characteristics suggest we should design Lexi so that it's easy to change the
formatting algorithm at least at compile-time, if not at run-time as well. We can isolate
the algorithm and make it easily replaceable at the same time by encapsulating it
in an object. More specifically, we'll define a separate class hierarchy for objects that
encapsulate formatting algorithms. The root of the hierarchy will define an interface
that supports a wide range of formatting algorithms, and each subclass will implement
the interface to carry out a particular algorithm. Then we can introduce a Glyph subclass
that will structure its children automatically using a given algorithm object.

Compositor and Composition

We'll define a Compositor class for objects that can encapsulate a formatting algorithm.
The interface (Table 2.2) lets the compositor know what glyphs to format and when to do
the formatting. The glyphs it formats are the children of a special Glyph subclass called
Composition. A composition gets an instance of a Compositor subclass (specialized
for a particular linebreaking algorithm) when it is created, and it tells the compositor to
Compose its glyphs when necessary, for example, when the user chariges a document.
Figure 2.5 depicts the relationships between the Composition and Compositor classes.

42 A CASE STUDY: DESIGNING A DOCUMENT EDITOR CHAPTER 2

An unformatted Composition object contains only the visible glyphs that make up
the document's basic content. It doesn't contain glyphs that determine the document's
physical structure, such as Row and Column. The composition is in this state just after
it's created and initialized with the glyphs it should format. When the composition
needs formatting, it calls its compositor's Compose operation. The compositor in turn
iterates through the composition's children and inserts new Row and Column glyphs
according to its linebreaking algorithm.7 Figure 2.6 shows the resulting object structure.
Glyphs that the compositor created and inserted into the object structure appear with
gray backgrounds in the figure.

Each Compositor subclass can implement a different linebreaking algorithm. For ex-
ample, a SimpleCompositor might do a quick pass without regard for such esoterica
as the document's "color." Good color means having an even distribution of text and
whitespace. A TeXCompositorwould implement the full TEX algorithm [Knu84], which
takes things like color into account in exchange for longer formatting times.

The Compositor-Composition class split ensures a strong separation between code
that supports the document's physical structure and the code for different formatting
algorithms. We can add new Compositor subclasses without touching the glyph classes,
and vice versa. In fact, we can change the linebreaking algorithm at run-time by adding
a single SetComposi tor operation to Composition's basic glyph interface.

Strategy Pattern

Encapsulating an algorithm in an object is the intent of the Strategy (315) pattern.
The key participants in the pattern are Strategy objects (which encapsulate different

algorithms) and the context in which they operate. Compositors are strategies; they en-

1The compositor must get the character codes of Character glyphs in order to compute the linebreaks.
In Section 2.8 we'll see how to get this information polymorphically without adding a character-specific
operation to the Glyph interface.

EMBELLISHING 1HE USER INTERFACE 43SECTION 2.4

Figure 2.6: Object,structure reflecting compositor-directed linebreaking

capsulate different formatting algorithms. A composition is the context for a compositor

strategy.
The key to applying the Strategy pattern is designing interfaces for the strategy and
its context that are general enough to support a range of algorithms. You shouldn't
have to change the strategy or context interface to support a new algorithm. In our
example, the basic Glyph interface's support for child access, insertion, and removal is
general enough to let Compo~itor subclasses change the document's physical structure,
regardless of the algorithm they use to do it. Likewise, the Compositor interface gives
compositions whatever they need to initiate formatting. ,

Embellishing the User Interface2.4

We consider two embellishments in Lexi's user interface. The first adds a border around
the text editing area to demarcate the page of text. The second adds scroll bars that let
the user view different parts of the page. To make it easy to add and remove these
embellishments (especially at run-time), we shouldn't use inheritance to add them
to the user interface. We achieve the most flexibility if other user interface objects
don't even know the embellishments are there. That will let us add and remove the
embellishments without changing other classes.

Transparent Enclosure

From a programming point of view, embellishing the user interface involves extending
existing code. Using inheritance to do such extension precludes rearranging embellish-

A CASE S1UD¥: DESIGNING A DOCUMENT EDITOR CHAPTER 244

ments at run-time, but an equally serious problem is the explosion of classes that can
result from an inheritance-based approach.

We could add a border to Composition by subclassing it to yield a BorderedComposi-
tion class. Or we could add a scrolling interface in the same way to yield a Scrollable-
Composition. If we want both scroll bars and a border, we might produce a Bordered-
ScrollableComposition, and so forth. In the extreme, we end up with a class for every
possible combination of embellishments, a solution that quickly becomes unworkable
as the variety of embellishments grows.

Object composition offers a potentially more workable and flexible extension mecha-
nism. But what objects do we compose? Since we know we're embellishing an existing
glyph, we could make the embellishment itself an object (say, an instance of class Bor-
der). That gives us two candidates for composition, the glyph and the border. The next
step is to decide who composes whom. We could have the border contain the glyph,
which makes sense given that the border will surround the glyph on the screen. Or
we could do the opposite--put the border into the glyph-but then we must make
modifications to the corresponding Glyph subclass to make it aware of the border. Our
first choice, composing the glyph in the border, keeps the border-drawing code entirely
in the Border class, leaving other classes alone.

What does the Border class look like? The fact that borders have an appearance suggests
they should actually be glyphs; that is, Border should be a subclass of Glyph. But
there's a more compelling reason for do~ng this: Clients shouldn't care whether glyphs
have borders or not. They should treat glyphs uniformly. When clients tell a plain,
unbordered glyph to draw itself, it should do so without embellishment. If that glyph
is composed in a border, clients shouldn't have to treat the border containing the glyph
any differently; they just tell it to draw itself as they told the plain glyph before. This
implies that the Border interface matches the Glyph interface. We subclass Border from
Glyph to guarantee this relationship.

All this leads us to the concept of transparent enclosure, which combines the notions
of (1) single-child (or single-component) composition and (2) compatible interfaces.
Clients generally can' t tell whether they're dealing with the component or its enclosure
(i.e., the child's parent), especially if the enclosure simply delegates all its operations to
its component. But the enclosure can also augment the component's behavior by doing
work of its own before and/or after delegating an operation. The enclosure can also
effectively add state to the component. We'll see how next.

Monoglyph

We can apply the concept of transparent enclosure to all glyphs that embellish other
glyphs. To make this concept concrete, we'll define a subclass of Glyph called Mono-
Glyph to serve as an abstract class for "embellishment glyphs," like Border (see Fig-
ure 2.7). MonoGlyph stores a reference to a component and forwards all requests to it.

SEC110N 2.4 EMBELLISHING 1HE USER lN1ERFACE 45

Figure 2.7: MonoGlyph class relationships

I

(
r,
l

That makes MonoGlyph totally transparent to clients by default. For example, Mono-
Glyph implements th~ Draw operation like this: .

void MonoGlyph::Draw (Window* w) {
_component->Draw(w) ;

MonoGlyph subclasses reimplement at least one of these forwarding opera-
tions. Border: : Draw, for instance, first invokes the parent class operation
MonoGlyph: : Draw on the component to let the component do its part-that is, draw
everything but the border. Then Border: : Dr aw draws the border by calling a private
operation called DrawBorder, the details of which we'll omit:

void Border: :Draw (Window* w)

MonoGlyph::Draw(w);
DrawBorder(w);

Notice how Border: : Draw effectively extends the parent class operation to draw the
border. This is in contrast to merely replacing the parent class operation, which would
omit the call to the MonoGlyph : : Draw.

Another MonoGlyph subclass appears in Figure 2.7. Scroller is a MonoGlyph that
draws its component in different locations based on the positions of two scroll bars,
which it adds as embellishments. When Scroller draws its component, it tells the graph-
ics system to clip to its bounds. Clipping parts of the component that are scrolled out
of view keeps them from appearing on the screen.

Now we have all the pieces we need to add a border and a scrolling interface to Lexi's
text editing area. We compose the existing Composition instance in a Scroller instance
to add the scrolling interface, and we compose that in a Border instance. The resulting
object structure appears in Figure 2.8.

SEC110N 2.5 SUPPORTING MULnPLE LOOK-AND-FEEL STANDARDS 47

Note that we can reverse the order of composition, putting the bordered composition
into the Scroller instance. In that case the border would be scrolled along with the text,
which mayor may not be desirable. The point is, transparent enclosure makes it easy to
experiment with different alternatives, and it keeps clients free of embellishment code.

Note also how the border composes one glyph, not two or more. This is unlike compo-
sitions we've defined so far, in which parent objects were allowed to have arbitrarily
many children. Here, putting a border around something implies that "something" is
singular. We could assign a meaning to embellishing more than one object at a time, but
then we'd have to mix many kinds of composition in with the notion of embellishment:
row embellishment, column embellishment, and so forth_That won't help us, since we
already have classes to do those kinds of compositions. So it's better to use existing
classes for composition and add new classes to embellish the result. Keeping embell-
ishment independent of other kinds of composition both simplifies the embellishment
classes and reduces their number. It also keeps us from replicating existing composition

functionality.

Decorator Pattern

The Decorator 075) pattern captures class and object relationships that support em-
bellishment by transparent enclosure. The term "embellishment" actually has broader
meaning than what we've considered here. In the Decorator pattern, embellishment
refers to anything that adds responsibilities to an object. We can think for example of
embellishing an abstract syntax tree with semantic actions, a finite state automaton
with new transitions, or a network of persistent objects with attribute tags. Decorator
generalizes the approach we've used in Lexi to make it more widely applicable.

2.5 Supporting Multiple Look-and-Feel Standards

Achieving portability across hardware and software platforms is a major problem in
system design. Retargeting Lexi to a new platform shouldn't require a major overhaul,
or it wouldn't be worth retargeting. We should make porting as easy as possible.

One obstacle to portability is the diversity of look-and-feel standards, which are in-
tended to enforce uniformity between applications. These standards define guidelines
for how applications appear and react to the user. While existing standards aren't that
different from each other, people certainly won't confuse one for the other-Motif ap-
plications don't look and feel exactly like their counterparts on other platforms, and
vice versa. An application that runs on more than one platform must conform to the
user interface style guide on each platform.

Our design goals are to make Lexi conform to multiple existing look-and-feel standards
and to make it easy to add support for new standards as they (invariably) emerge. We

48 A CASE STUDY: DESIGNING A DOCUMENT EDITOR CHAPTER 2

also want our design to support the ultimate in flexibility: changing Lexi's look and
feel at run-time.

Abstracting Object Creation

Everything we see and interact with in Lexi's user interface is a glyph composed in
other, invisible glyphs like Row and Column. The invisible glyphs compose visible
ones like Button and Character and lay them out properly. Style guides have much
to say about the look and feel of so-called "widgets," another term for visible glyphs
like buttons, scroll bars, and menus that act as controlling elements in a user interface.
Widgets might use simpler glyphs such as characters, circles, rectangles, and polygons
to present data.

We'll assume we have two sets of widget glyph classes with which to implement
mul!iple look-and-feel standards:

1. A set of abstract Glyph subclasses for each category of widget glyph. For ex-
ample, an abstract class ScrolIBar will augment the basic glyph interface to add
general scrolling operations; Button is an abstract class that adds button-oriented
operations; and so on.

2. A set of concrete subclasses for each abstract subclass that implement different
look-and-feel standards. For example, ScrollBar might have MotifScrollBar and
PMScrollBar subclasses that implement Motif and Presentation Manager-style
scroll bars, respectively.

Lexi must distinguish between widget glypfts for different look-and-feel styles. For
example, when Lexi needs to put a button in its interface, it must instantiate a Glyph
subclass for the right style of button (MotifButton, PMButton, MacButton, etc.).

It's clear that Lexi's implementation can't do this directly, say, using a constructor call
in C++. That would hard-code the button of a particular style, making it impossible
to select the style at run-time. We' d also have to track down and change every such
constructor call to port Lexi to another platfonn. And buttons are only one of a variety
of widgets in Lexi's user interface. Littering our code with constructor calls to specific
look-and-feel classes yields a maintenance nightmare--miss just one, and you could
end up with a Motif menu in the middle of your Mac application.

Lexi needs a way to detennine the look-and-feel standard that's being targeted in order
to create the appropriate widgets. Not only must we avoid making explicit constructor
calls; we must also be able to replace an entire widget set easily. We can achieve both
by abstracting the process of object creation. An example will illustrate what we mean.

SEcnON 2.5 SUPPORnNG MULnPLE LOOK-AND-FEEL STANDARDS 49

Factories and Product Classes

Nonnally we might create an instance of a Motif scroll bar glyph with the following
C++ code:

ScrollBar* sb = new MotifScrollBar

This is the kind of code to avoid if you want to minimize Lexi's look-and-feel depen-
dencies. But suppose we initialize sb as follows:

ScrollBar* sb = guiFactory->CreateScrollBar();

where guiFactoryis an instance of a MotifFactoryclass. CreateScrollBar returns
a new instance of the proper ScroIlBar subclass for the look and feel desired, Motif in this
case. As far as clients are concerned, the effect is the same as calling the MotifScrollBar
constructor directly. But there's a crucial difference: There's no longer anything in the
code that mentions Motif by name. The guiFactory object abstracts the process of
creating not just Motif scroll bars but scroll bars for any look-and-feel standard. And
guiFactory isn't limited to producing scroll bars. It can manufacture a full range of
widget glyphs, including scroll bars, buttons, entry fields, menus, and so forth.

All this is possible because MotifFactory is a subclass of GUIFactory , an abstract class
that defines a general interface for creating widget glyphs. It includes operations like
CreateScrollBar and CreateButton for instantiating different kinds of widget
glyphs. Subclasses of GUIFactory implement these operations to return glyphs such
as MotifScrollBar and PMButton that implement a particular look and feel. Figure 2.9
shows the resulting class hierarchy for guiFactory objects.

We say that factories create product objects. Moreover, the products that a factory
produces are related to one another; in this case, the products are all widgets for the
same look and feel. Figure 2.10 shows some of the product classes needed to make
factories work for widget glyphs.

The last question we have to answer is, Where does GUIFactory instance come from?
The answer is, Anywhere that's convenient. The variable guiFactory could be a
global, a static member of a well-known class, or even a local variable if the entire user
interface is created within one class or function. There's even a design pattern, Sin-
gleton (127), for managing well-known, one-of-a-kind objects like this. The important
thing, though, is to initializeguiFactory at a point in the program before it's ever used
to create widgets but after it's clear which look and feel is desired.

If the look and feel is known at compile-time, then guiFactory can be initialized with
a simple assignment of a new factory instance at the beginning of the program:

GUIFactory* guiFactory = new Motif Factory;

If the user can specify the look and feel with a string name at startup time, then the
code to create the factory might be

CHAPTER 2So A CASE SJVDY: DESIGNING A DOCUMENT EDIWR

, ,

MOtifF~Ory 1

.
..

..

..

...
..

., .

...

..,

., ,

., .

I ~ .,

I return new MacMenu I ~ ~

..

I retum new MacBunon i;

.
,

I retum new MacScrOllBa'

,
.

, ,
, .,

, ,
, .
.,, ..

, ., , .
..., ,
, , , , .

I retum new MotifMen~ ., I retum new PMMenu ,, , ,

retum new MotifMenu : : retum new PMMenu : :
.., .
, ..,

I retum new MOtifBun~ j I retum new PMBunon i ~

..

..

I retum new MotifScrOllBa' I retum new PMSCrOIlBa~

Fjgure 2.9: GUIFactory class hierarchy

r-.;;;;;;;--

-1-=
ScrollSar Button

ScroIITo(int)

.

PMButton

Press() Popup{)

Figure 2.10: Abstract product classes and concrete subclasses

SEC710N 2.6 SUPPOR1ING MULnPLE WINDOW SYSTEMS 51

GUIFactory* guiFactory;
const char* styleName = getenv("LOOK_AND_FEEL");

II user or environment supplies this at startup

if (strcrnp(styleNarne, .Motif.) == 0) (

guiFactory = new Motif Factory;

} else if (strcmp(styleName, -Presentation_Manager-

guiFactory = new PMFactory;

== 0) {

else {
guiFactory = new DefaultGUIFactory;

There are more sophisticated ways to select the factory at run-time. For example, you
could maintain a registry that maps strings to factory objects. That lets you register
instances of new factory subclasses without modifying existing code, as the preceding
approach requires. And you don't have to link all platform-specific factories into the
application. That's important, because it might not be possible to link a MotifFactory
on a platform that doesn't support Motif.

But the point is that once we've configured the application with the right factory
object, its look and feel is set from then on. If we change our minds, we can reinitialize
guiFactory with a factory for a different look and feel and then reconstruct the
interface. Regardless of how and when we decide to initialize guiFactory, we know
that once we do, the application can create the appropriate look and feel without
modification.

Abstract Factory Pattern

Factories and products are the key participants in the Abstract Factory (87) pattern. This
pattern captures how to create families of related product objects without instantiating
classes directly. It's most appropriate when the number and general kinds of product
objects stay constant, and there are differences in specific product families. We choose
between families by instantiating a particular concrete factory and using it consistently
to create products thereafter. We can also swap entire families of products by replacing
the concrete factory with an instance of a different one. The Abstract Factory pattern's
emphasis on families of products distinguishes it from other creational patterns, which
involve only one kind of product object.

2.6

Look and feel is just one of many portability issues. Another is the windowing en-
vironment in which Lexi runs. A platform's window system creates the illusion of
multiple overlapping windows on a bitmapped display. It manages screen space for

CHAPTER 152 A CASE s1UD¥: DESIGNING A DOCUMENT EDITOR

windows and routes input to them from the keyboard and mouse. Several important
and largely incompatible window systems exist today (e.g., Macintosh, Presentation
Manager, Windows, X). We'd like Lexi to run on as many of them as possible for exactly
the same reasons we support multiple look-and-feel standards.

Can We Use an Abstract Factory?

At first glance this may look like another opportunity to apply the Abstract Factory
pattern. But the constraints for window system portability differ significantly from
those for look-and-feel independence.

In applying the Abstract Factory pattern, we assumed we would define the concrete
widget glyph classes for each look-and-feel standard. That meant we could derive each
concrete product for a particular standard (e.g., MotifScrollBar and MacScrollBar) from
an abstract product class (e.g., ScrollBar). But suppose we already have several class
hierarchies from different vendors, one for each look-and-feel standard. Of course, it' s
highly unlikely these hierarchies are compatible in any way. Hence we won't have a
common abstract product class .for each kind of widget (ScrollBar, Button, Menu, etc.)-
and the Abstract Factory pattern won' t work without those crucial classes. We have
to make the different widget hierarchies adhere to a common set of abstract product
interfaces. Only then could we declare the Create. ..operations properly in our
abstract factory's interface.

We solved this problem for widgets by developing our own abstract and concrete prod-
uct classes. Now we're faced with a similar problem when we try to make Lexi work
on existing window systems; namely, differeJ;tt window systems have incompatible
programming interfaces. Things are a bit tougher this time, though, because we can't
afford to implement our own nonstandard window system.

But there's a saving grace. Like look-and-feel standards, window system interfaces
aren't radically different from one another, because all window systems do generally
the same thing. We need a uniform set of windowing abstractions that lets us take
different window system implementations and slide anyone of them under a common
interface.

Encapsulating Implementation Dependencies

In Section 2.2 we introduced a Window class for displaying a glyph or glyph structure
on the display. We didn't specify the window system that this object worked with,
because the truth is that it doesn't come from any particular window system. The
Window class encapsulates the things windows tend to do across window systems:

.They provide operations for drawing basic geometric shapes.

.They can iconify and de-iconify themselves.

SECTION 2.6 SUPPORTING MUL11PLE WINDOW SYSTEMS 53

Table 2.3: Window class interface

.They can resize themselves.

.They can (re)draw their contents on demand, for example, when they are de-
iconified or when an overlapped and obscured portion of their screen space is

exposed.

The Window class must span the functionality of windows from different window
systems. Let's consider two extreme philosophies:

Intersection of functionality. The Window cl.
that's common to all window systems. Th
Window interface winds up being only a
system. We can't take advantage of more
all) window systems support them.

2. Union of functionality. Create an interface that incorporates the capabilities of all
existing systems. The trouble here is that the resulting interface may well be huge
and incoherent. Besides, we'll have to change it (and Lexi, which depends on it)
anytime a vendor revises its window system interface.

Neither extreme is a viable solution, so our design will fall somewhere between the
two. The Window class will provide a convenient interface that supports the most
popular windowing features. Because Lexi will deal with this class directly; the Window
class must also support the things Lexi knows about, namely, glyphs. That means
Window's interface must include a basic set of graphics operations that lets glyphs
draw themselves in the window. Table 2.3 gives a sampling of the operations in the
Window class interface.

Window is an abstract class. Concrete subclasses of Window support the different kinds
of windows that users deal with. For example, application windows, icons, and warning
dialogs are all windows, but they have somewhat different behaviors. So we can define
subclasses like ApplicationWindow, IconWindow, and DialogWindow to capture these

ass interface provides only functionality
e problem with this approach is that our
s powerful as the. least capable window
advanced features even if most (but not

CHAPTER 2A CASE STUDY: DESIGNING A DOCUMENT EDITOR54

differences. The resulting class hierarchy gives applications like Lexi a uniform and
intuitive windowing abstraction, one that doesn't depend on any particular vendor's

window system:

f gIyph->Draw(this) ,

I ApplicationWindow I

.

.

..

lowner->L:eroj

Now that we've defined a window interface for Lexi to work with, where does the
real platform-specific window come in? If we're not implementing our own window
system, then at some point our window abstraction must be implemented in terms of
what the target window system provides. So where does that implementation live?

One approach is to implement multiple versions of the Window class and its subclasses,
one version for each windowing platform.1vYe' d have to choose the version to use when
we build Lexi for a given platform. But imagine the maintenance headaches we' d
have keeping track of multiple classes, all named "Window" but each implemented
on a different window system. Alternatively, we could create implementation-specific
subclasses of each class in the Window hierarchy-and end up with another subclass
explosion problem like the one we had trying to add embellishments. Both of these
alternatives have another drawback: Neither gives us the flexibility to change the
window system we use after we've compiled the program. So we'll have to keep

several different executables around as well.

Neither alternative is very appealing, but what else can we do? The same thing we
did for formatting and embellishment, namely, encapsulate the concept that varies. What
varies in this case is the window system implementation. If we encapsulate a window
system's functionality in an object, then we can implement our Window class and
subclasses in terms of that object's interface. Moreover, if that interface can serve all
the window systems we're interested in, then we won't have to change Window or
any of its subclasses to support different window systems. We can configure window
objects to the window system we want simply by passing them the right window
system-encapsulating object. We can even configure the window at run-time.

SUPPORTING MULllPLE WINDOW SYSTEMS 55SEC110N 2.6

Window and WindowImp

We'll define a separate WindowImp class hierarchy in which to hide different window
system implementations. WindowImp is an abstract class for objects that encapsulate
window system-dependent code. To make Lexi work on a particular window sys-
tern, we configure each window object with an instance of a WindowImp subclass for
that system. The following diagram shows the relationship between the Window and
WindowImp hierarchies:

~

By hiding the implementations in WindowImp classes, we avoid polluting the Window
classes with window system dependencies, which keeps the Window class hierarchy
comparatively small and stable. Meanwhile we can easily extend the implementation
hierarchy to support new window systems. ,

WindowImp Subclasses

Subclasses of Windowlmp convert requests into window system-specific operations.
Consider the example we used in Section 2.2. We defined the Rectangle: : Draw in
terms of the DrawRect operation on the Window instance:

void Rectangle: :Draw (Window* w) {

w->DrawRect(_xO. -yO. _xI. -yI);

The default implementation of DrawRect uses the abstract operation for drawing
rectangles declared by Windowlmp:

void Window:
Coord xO

DrawRect (

Coord yO. Coord xI. Coord yI

imp->DeviceRect{xO yO, xl yl)

CHAPTER 2A CASE SIVD¥: DESIGNING A DOCUMENT EDITOR56

where _impisa member variable of Window that stores the WindowImpwith which the
Window is configured. The window implementation is defined by the instance of the
WindowImp subclass that _imp points to. For an XWindowImp {that is, a WindowImp
subclass for the X Window System), the DeviceRect's implementation might look

like

'oid XWindowlmp::DeviceRect (
Coord xO, Coord yO, Coord xl, Coord yl

X, y, w, h) ;

int x= round(rnin(xO, xi»;

int y = round(rnin(yO, yi)) ;

int w = round(abs(xO -xl»;

int h = round(abs(yO -yl»;

XDrawRectangle(_dpy, _winid, -gc,

DeviceRec~ is defined like this because XDrawRectangle (the X interface for draw-
ing a rectangle) defines a rectangle in terms of its lower left comer, its width, and its
height. Dev i ceRec t must compute these values from those supplied. First it ascertains
the lower left comer (since (xO, yO) might be anyone of the rectangle's four comers)

and then calculates the width and height.

PMWindowImp (a subclass of WindowImp for Presentation Manager) would define

DeviceRe.ct differently:

void PMWindowImp::DeviceRect (
Coord xO. Coord yO, Coord xl. Coord yl

) {
Coord left = min(xO. xI);

Coord right = max(xO, xI)

Coord bottom = min(yO, yI

Coord top = max(yO, yI);

PPOINTL point[4];

point[C
point[]
point [;
point [:

point[O] .y = top;
point [1] .y = top;
point[2].y = bottom;
point[3] .y = bottom;

(GpiBeginPath(_hps, lL) == false) II
(GpiSetCurrentPosition(_hps. &point[]) == false)

(GpiPolyLine(_hps. 4L, point) == GPI_ERROR) II

(GpiEndPath(_hps) == false)

/ report error

} else {

GpiStrokePath(_hps. lL. OL)

, = left ;

, = right;

' = right;

t = left;

SEC110N 2.6 SUPPORnNG MULTIPLE WINDOW SYSTEMS 57

Why is this so different from the X version? Well, PM doesn't have an operation for
drawing rectangles explicitly as X does. Instead, PM has a more general interface for
specifying vertices of multisegment shapes (called a path) and for outlining or filling
the area they enclose.

PM's implementation of DeviceRect is obviously quite different from X's, but that
doesn't matter. WindowImp hides variations in window system interfaces behind a
potentially large but stable interface. That lets Window subclass writers focus on the
window abstraction and not on window system details. It also lets us add support for
new window systems without disturbing the Window classes.

Configuring Windows with WindowImps

A key issue we haven't addressed is how a window gets configured with the proper
Windowlmp subclas~ in the first place. Stated another way, when does _imp get ini-
tialized, and who knows what window system (and consequently which WindowImp
subclass) is in use? The window will need some kind of WindowImp before it can do

anything interesting.
There are several possibilities, but we'll focus on one that uses the Abstract Factory (87)
pattern. We can define an abstract factory class WindowSystemFactory that provides
an interface for creating different kinds of window system-dependent implementation
objects:

class WindowSystemFactory {

public:
virtual Windowlmp* CreateWindowlmp() = 0,

virtual Colorlmp* CreateColorlmp() = 0; ,

virtual Fontlmp* CreateFontlmp() = 0,

a "Create .operation for all window system resources
PO'

~

~

Now we can define a concrete factory for each window system:

class PMWindowSystemFactory : public WindowSystemFactory

virtual WindowImp* CreateWindowlmp()

{ return new PMWindowlmp; }

class XWindowSystemFactory : public WindowSystemFactory

virtual WindowImp* CreateWindowImp()

{ return new XWindowImp; }

II

The Window base class constructor can use the WindowSystemFactory interface to
initialize the _imp member with the WindowImp that's right for the window system:

A CASE SJVDY: DESIGNING A DOCUMENT EDITOR CHAPTER 258

Window: :Window () {
_imp = windowSystemFactory->CreateWindowlmp();

The windowSystemFactory variable is a well-known instance of a WindowSystem-
Factory subclass, akin to the well-known guiFactory variable defining the look and
feel. The windowSystemFactory variable can be initialized in the same way.

Bridge Pattern

The Windowlmp class defines an interface to common window system facilities, but
its design is driven by different constraints than Window's interface. Application pro-
grammers won't deal with WindowImp's interface directly; they only deal with win-
dow objects. So Windowlmp's interface needn't match the application programmer's
view of the world, as was our concern in the design of the Window class hierarchy
and interface. Windowlmp's interface can more closely reflect what window systems
actually provide, warts and all. It can be biased toward either an intersection or a union
of functionality approach, whichever suits the target window systems best.

The important thing to realize is that Window's interface caters to the applications
programmer, while Windowlmp caters to window systems. Separating windowing
functionality into Window and Window Imp hierarchies lets us implement and spedal-
ize these interfaces independently. Objects from these hierarchies cooperate to let Lexi
work without modification on multiple window systems.

The relationship between Window and Windowlmp is an example of the Bridge (151)
pattern. The intent behind Bridge is to allow'separate class hierarchies to work together
even as they evolve independently. Our design criteria led us.to create two separate
class hierarchies, one that supports the logical notion of windows, and another for
capturing different implementations of windows. The Bridge pattern lets us maintain
and enhance our logical wind owing abstractions without touching window system-
dependent code, and vice versa.

2.7 User Operations

Some of Lex.i's functionality is available through the document's WYSIWYG represen-
tation. You enter and delete text, move the insertion point, and select ranges of text by
pointing, clicking, and typing directly in the document. Other functionality is accessed
indirectly through user operations in Lex.i's pull-down menus, buttons, and keyboard
accelerators. The functionality includes operations for

.creating a new document,

.opening, saving, and printing an existing document,

USER OPERA110NsSEcnON 2.7 59

.cutting selected text out of the document and pasting it back in,

.changing the font and style of selected text,

.changing the formatting of text, such as its alignment and justification,

.quitting the application,

.and on and on.

Lexi provides different user interfaces for these operations. But we don't want to
associate a particular user operation with a particular user interface, because we may
want multiple user interfaces to the same operation (you can turn the page using either
a page button or a menu operation, for example). We may also want to change the
interface in the future.

Furthermore, these operations are implemented in many different classes. We as imple-
mentors want to access their functionality without creating a lot of dependencies be-
tween implementation 'and user interface classes. Otherwise we'll end up with a tightly
coupled implementation, which will be harder to understand, extend, and maintain.

To further complicate matters, we want Lexi to support undo and redo8 of most but
not all its functionality. Specifically, we want to be able to undo document-modifying
operations like delete, with which a user can destroy lots of data inadvertently. But we
shouldn't try to undo an operation like saving a drawing or quitting the application.
These operations should have no affect on the undo process. We also don't want an
arbitrary limit on the number of levels of undo and redo.

It's clear that support for user operations permeates the application. The challenge is
to come up with a simple and extensible mechanism that satisfies all of these needs.

Encapsulating a Request

From our perspective as designers, a pull-down menu is just another kind of glyph that
contains other glyphs. What distinguishes pull-down menus from other glyphs that
have children is that most glyphs in menus do some work in response to an up-click.

Let's assume that these work-perfonning glyphs are instances of a Glyph subclass
called MenuItem and that they do their work in response to a request from a client.9
Carrying out the request might involve an operation on one object, or many operations
on many objects, or something in between.

We could define a subclass of MenuItem for every user operation and then hard-code
each subclass to carry out the request. But that's not really right; we don't need a
subclass of MenuItem for each request any more than we need a subclass for each text

8 That is, redoing an operation that was just undone.

9Conceptually, the client is Lexi's user, but in reality it's another object {such as an event dispatcher) that
manages inputs from the user.

A CASE SWD¥: DESIGNING A DOCUMENT EDITOR CHAPTER 260

string in a pull-down menu. Moreover, this approach couples the request to a particular
user interface, making it hard to fulfill the request through a different user interface.

To illustrate, suppose you could advance to the last page in the document both through
a MenuItem in a pull-down menu and by pressing a page icon at the bottom of Lexi's
interface (which might be more convenient for short documents). If we associate the
request with a MenuItem through inheritance, then we must do the same for the page
icon and any other kind of widget that might issue such a request. That can give rise
to a number of classes approaching the product of the number of widget types and the
number of requests.

What's missing is a mechanism that lets us parameterize menu items by the request
they should fulfill. That way we avoid a proliferation of subclasses and allow for greater
flexibility at run-time. We could parameterize Menultem with a function to call, but
that's not a complete solution for at least three reasons:

1. It doesn't address the undo / redo problem.

2. It's hard to associate state with a function. For example, a function that changes
the font needs to know .which font.

3. Functions are hard to extend, and it's hard to reuse parts of them.

These reasons suggest that we should parameterize Menultems with an object, not a
function. Then we can use inheritance to extend and reuse the request's implementation.
We also have a place to store state and implement undo/redo functionality. Here we
have another example of encapsulating the concept that varies, in this case a request.
We'll encapsulate each request in a commal'.d object.

Command Class and Subclasses

First we define a Command abstract class to provide an interfac~ for issuing a request.
The basic interface consists of a single abstract operation called "Execute." Subclasses
of Command implement Execute in different ways to fulfill different requests. Some
subclasses may delegate part or all of the work to other objects. Other subclasses may be
in a position to fulfill the request entirely on their own (see Figure 2.11). To the requester,
however, a Command object is a Command object-theyare treated uniformly.

Now MenuItem can store a Command object that encapsulates a request (Figure 2.12).
We give each menu item object an instance of the Command subclass that's suitable
for that menu item, just as we specify the text to appear in the menu item. When a user
chooses a particular menu item, the MenuItem simply calls Execute on its Command
object to carry out the request. Note that buttons and other widgets can use commands
in the same way menu items do.

SEC110N 2.7 USER OPERAnONS 61

v

1;
t

~

~
:f

~
~
.
t

~

.

.
,

I command->EX;:;;;;;eO; ~

L

Figure 2.12: Menultem-Command relationship

62 A CASE SWDY: DESIGNING A DOCUMENT EDrroR CHAPTER 2

Undoability

Undo/redo is an important capability in interactive applications. To undo and redo
commands, we add an Unexecute operation to Command's interface. Unexecute re-
verses the effects of a preceding Execute operation using whatever undo information
Execute stored. In the case of a FontCommand, for example, the Execute operation
would store the range of text affected by the font change along with the original font(s).
FontCommand's Unexecute operation would restore the range of text to its original
font(s).

Sometimes undoability must be determined at run-time. A request to change the font
of a selection does nothing if the text already appears in that font. Suppose the user
se.Iects some text, and requests a spurious font change. What should be the result of
a subsequent undo request? Should a meaningless change cause the undo request to
do something equally meaningless? Probably not. If the user repeats the spurious font
change several times, he shouldn't have to perform exactly the same number of undo
operations to get back to the last meaningful operation. If the net effect of executing a
command was nothing, then there's no need for a corresponding undo request.

So to determine if a command is undoable, we add an abstract Reversible operation
to the Command interface. Reversible returns a Boolean value. Subclasses can redefine
this operation to return true or false based on run-time criteria.

Command History

The final step in supporting arbitrary-Ievel undo and redo is to define a command
history, or list of commands that have been ex'ecuted (or unexecuted, if some commands
have been undone). Conceptually, the command history looks like this:

Each circle represents a Command object. In this case the user has issued four com-
mands. The leftmost command was issued first, followed by the second-leftmost, and
so on until the most recently issued command, which is rightmost. The line marked
"present" keeps track of the most recently executed (and unexecuted) command.

To undo the last command, we simply call Unexecute on the most recent command:

USER OPERAnONS 63SEC110N 2.7

"
Unexecute()

present

After unexecuting the command, we move the "present" line one command to the left.
If the user chooses undo again, the next-most recently issued command will be undone
in the same way, and we're left in the state depicted here:

You can see that by simply repeating this procedure we get multiple levels of undo.
The number of levels is limited only by the length of the command history.

To redo a command that's just been undone, we do the same thing in reverse. Com-
mands to the right of the present line are commands that may be redone in the future.
To redo the last undone command, we call Execute on the command to the right of the
present line:

Then we advance the present line so that a subsequent redo will call redo on the
following command in the future.

A CASE s1UD¥: DESIGNING A DOCUMENT EDITOR64 CHAPTER 2

Of course, if the subsequent operation is not another redo but an undo, then the
command to the left of the present line will be undone. Thus the user can effectively go
back and forth in time as needed to recover from errors.

Command Pattern

Lexi's commands are an application of the Command (233) pattern, which describes
how to encapsulate a request. The Command pattern prescribes a uniform interface
for issuing requests that lets you configure clients to handle different requests. The
interface shields clients from the request's implementation. A command may delegate
all, part, or none of the request's implementation to other objects. This is perfect for
applications like Lexi that must provide centralized access to functionality scattered
throughout the application. The pattern also discusses undo and redo mechanisms
built on the basic Command interface.

2.8

The last design problem involves textual analysis, specifically checking for misspellings
and introducing hyphenation points where needed for good formatting.

The constraints here are similar to those we had for the formatting design problem in
Section 2.3. As was the case for linebreaking strategies, there's more than one way to
check spelling and compute hyphenation points. So here too we want to support multi-
ple algorithms. A diverse set of algorithms can provide a choice of space / time / quality
trade-offs. We should make it easy to add new algorithms as well.

We also want to avoid wiring this functionality into the document structure. This goal is
even more important here than it was in the formatting case, because spelling checking
and hyphenation are just two of potentially many kinds of analyses we may want
Lexi to support. Inevitably we'll want to expand Lexi's analytical abilities over time.
We might add searching, word counting, a calculation facility for adding up tabular
values, grammar checking, and so forth. But we don't want to change the Glyph class
and all its subclasses every time we introduce new functionality of this sort.

SECTION 2.8 SPELLING CHECKING AND HYPHENAnON 65

There are actually two pieces to this puzzle: (1) accessing the information to be analyzed,
which we have scattered over the glyphs in the document structure, and (2) doing the
analysis. We'll look at these two pieces separately.

Accessing Scattered Infomlation

Many kinds of analysis require examining the text character by character. The text we
need to analyze is scattered throughout a hierarchical structure of glyph objects. To
examine text in such a structure, we need an access mechanism that has knowledge
about the data structures in which objects are stored. Some glyphs might store their
children in linked lists, others might use arrays, and still others might use more esoteric
data structures. Our access mechanism must be able to handle all of these possibilities.

An added complication is that different analyses access information in different ways.
Most analyses will traverse the text from beginning to end. But some do the opposite-a
reverse search, for example, needs to progress through the text backward rather than
forward. Evaluating algebraic expressions could require an inorder traversal.

So our access mechanism must accommodate differing data structures, and we must
support different kinds of traversals, such as preorder, postorder, and inorder.

Encapsulating Access and Traversal

Right now our glyph interface uses an integer index to let clients refer to children.
Although that might be reasonable for glyph classes that store their children in an
array, it may be inefficient for glyphs that use a linked list. An important role of the
glyph abstraction is to hide the data structure in which children are stored. That way
we can change the data structure a glyph class uses without affect~ng other classes.

Therefore only the glyph can know the data structure it uses. A corollary is that the
glyph interface shouldn't be biased toward one data structure or another. It shouldn't
be better suited to arrays than to linked lists, for example, as it is now.

We can solve this problem and support several different kinds of traversals at the
same time. We can put multiple access and traversal capabilities directly in the glyph
classes and provide away to choose among them, perhaps by supplying an enumerated
constant as a parameter. The classes pass this parameter around during a traversal to
ensure they're all doing the same kind of traversal. They have to pass around any
information they've accumulated during traversal.

We might add the following abstract operations to Glyph's interface to support this

approach:

A CASE S11JDY: DESIGNING A DOCUMENT EDITOR CHAPTER 266

void First(Traversal kind)
void Next()
bool IsDone()

Glyph* GetCurrent()
void Insert(Glyph*)

Operations First, Next, and IsDone control the traversal. First initializes the
traversal. It takes the kind of traversal as a parameter of type Traversal, an enu-
merated constant with values such as CHILDREN (to traverse the glyph's immediate
children only), PREORDER (to traverse the entire structure in preorder), POSTORDER,
and INORDER. Next advances to the next glyph in the traversal, and IsDone reports
whether the traversal is over or not. GetCurrent replaces the Child operation; it
accesses the current glyph in the traversal. Insert replaces the old operation; it inserts
the given glyph at the current position.

An analysis would use the following C ++ code to do a preorder traversal of a glyph
strUcture rooted at g:

Glyph* g;

for (g->First(PREORDER); !g->IsDone()
Glyph* current = g->GetCurrent();

g->Next

do some analysis

Notice that we've banished the integer index from the glyph interface. There's no longer
anything that biases the interface toward on.e kind of collection or another. We've also
saved clients from having to implement common kinds of traversals themselves.

But this approach still has problems. For one thing, it can't support new traversals
without either extending the set of enumerated values or adding new operations.
Say we wanted to have a variation on preorder traversal that automatically skips non-
textual glyphs. We'd have to change the Traversal enumeration to include something
like TEXTUAL_PREORDER.

We'd like to avoid changing existing declarations. Putting the traversal mechanism en-
tirely in the Glyph class hierarchy makes it hard to modify or extend without changing
lots of classes. It' s also difficult to reuse the mechanism to traverse other kinds of object
structures. And we can't have more than one traversal in progress on a structure.

Once again, a better solution is to encapsulate the concept that varies, in this case the
access and traversal mechanisms. We can introduce a class of objects called iterators
whose sole purpose is to define different sets of these mechanisms. We can use inher-
itance to let us access different data structures uniformly and support new kinds of
traversals as well. And we won't have to change glyph interfaces or disturb existing
glyph implementations to do it.

SPELLING CHECKING AND HYPHENAnON 67SECI10N 2.8

~.

First()

Next()

IsDone()

Cu"entnem()

Arraylterator
ilerators

First()
Next()

IsDone()
Current Item()

-,
I
I
I
,
.

~

root

-,

I return new Nulllterator i

Figure 2.13: Iterator class and subclasses

Iterator Class and Subclasses

We'll use an abstract class called Iterator to define a general interface for access and tra-
versal. Concrete subclasses like ArrayIterator and ListIterator implement the interface
to provide access to arrays and lists, while PreorderIterator, PostorderIterator, and the
like implement different traversals on specific structures. Each Iterator subclass has a
reference to the structure it traverses. Subclass instances are initialized with this refer-
ence when they are created. Figure 2.13 illustrates the Iterator class along with several
subclasses. Notice that we've added a CreateIterator abstract operation to the Glyph
class interface to support iterators.

The Iterator interface provides operations First, Next, and IsDone for controlling the
traversal. The ListIterator class implements First to point to the fIrst element in the list,
and Next advances the iterator to the next item in the list. IsDone returns whether or
not the list pointer points beyond the last element in the list. CurrentItem dereferences
the iteratorto return the glyph it points to. An ArrayIterator class would do similar
things but on an array of glyphs.

Now we can access the children of a glyph structure without knowing its representa-
tion:

68 A CASE STUDY: DFSIGNING A DOCUMENT EDITOR CHAPTER 2

Glyph* g;
Iterator<Glyph*>* i= g->Createlterator();

for !i->IsDone(); i->Next()
= i->Currentltem() ;

(i->First();

Glyph* child

do something with current child

CreateIterator returns a NullIterator instance by default. A Nul1lterator is a degenerate
iterator for glyphs that have no children, that is, leaf glyphs. NullIterator's IsDone
operation always returns true.

A glyph subclass that has children will override CreateIterator to return an instance
of a different Iterator subclass. Which subclass depends on the structure that stores the
children. If the Row subclass of Glyph stores its children in a list _children, then its
CreateIterator operation would look like this:

Iterator<Glyph*>* Row::CreateIterator
return new ListIterator<Glyph*>(-

() {

children)

Iterators for preorder and inorder traversals implement their traversals in terms of
glyph-spedfic iterators. The iterators for these traversals are supplied the root glyph in
the structure they traverse. They call CreateIterator on the glyphs in the structure and
use a stack to keep track of the resulting iterators.

For example, class PreorderIterator gets the iteratorfrom the root glyph, initializes
it to point to its first element, and then pushes it onto the stack:

void Preorderlterator::First () {

Iterator<Glyph*>* i= _root->Createlterator()

if

i->First();
_iterators.RemoveAll()
_iterators.Push(i);

Current Item would simplycaII Current Item on the iteratorat the top of the stack:

SEC110N 2.8 SPELUNG CHECKING AND HYPHENAllON 69

Glyph* PreorderIterator
Glyph* 9 = 0;

Current Item () const

if (_iterators.Size() > 0) {

9 = _iterators.Top()->Currentltem()

}

return g;

The Next operation gets the top iterator on the stack and asks its current item to
create an iterator, in an effort to descend the glyph structure as far as possible (this
is a preorder traversal, after all). Next sets the new iterator to the first item in the
traversal and pushes it on the stack. Then Next tests the latest iterator; if its IsDone
operation returns true, then we've finished traversing the current subtree (or leaf) in the
traversal. In that case, Next pops the top iterator off the stack and repeats this process
until it finds the next incomplete traversal, if there is one; if not, then we have finished
traversing the structure.

void Preorderlte~ator::Next () {
Iterator<Glyph*>* i =

_iterators.Top()->Currentltem()->Createlterator();
i->First();

while

iterators.Size(} 0 && iterators.Top (IsDone

delete _iterators.Pop();

_iterators.Top()->Next()

Notice how the Iterator class hierarchy lets us add new kinds of traversals without
modifying glyph classes-we simply subclass Iterator and add a new traversal as
we have with Preorderlterator. Glyph subclasses use the same interface to give
clients access to their children without revealing the underlying data structure they
use to store them. Because iterators store their own copy of the state of a traversal,
we can carry on multiple traversals simultaneously, even on the same structure. And
though our traversals have been over glyph structures in this example, there's no
reason we can't parameterize a class like Preorderlterator by the type of object in
the structure. We'd use templates to do that in C++. Then we can reuse the machinery
in Preorderlterator to traverse other structures.

Iterator Pattern

The Iterator (257) pattern captures these techniques for supporting access and traversal
over object structures. It's applicable not only to composite structures but to collections

70 A CASE STUDY: DESIGNING A DOCUMENT EDITOR CHAPTER 2

as well. It abstracts the traversal algorithm and shields clients from the internal structure
of the objects they traverse. The Iterator pattern illustrates once more how encapsulating
the concept that varies helps us gain flexibility and reusability. Even so, the problem of
iteration has surprising depth, and the Iterator pattern covers many more nuances and
trade-offs than we've considered here.

Traversal versus Traversal Actions

Now that we have a way of traversing the glyph structure, we need to check the spelling
and do the hyphenation. Both analyses involve accumulating infonnation during the
traversal.

First we have to decide where to put the responsibility for analysis. We could put it in the
Iterator classes, thereby making analysis an integral part of traversal. But we get more
flexibility and potential for reuse if we distinguish between the traversal and the actions
perfonned during traversal. That's because different analyses often require the same
kind of traversal. Hence we can reuse the same set of iterators for different analyses. For
example, preorder traversal is common to many analyses, including spelling checking,
hyphenation, forward search, and word count.

So analysis and traversal should be separate. Where else can we put the responsibility
for analysis? We know there are many kinds of analyses we might want to do. Each
analysis will do different things at different points in the traversal. Some glyphs are
more significant than others depending on the kind of analysis. If we're checking
spelling or hyphenating, we want to consider character glyphs and not graphical ones
like lines and bitmapped images. If we're. making color separations, we'd want to
consider visible glyphs and not invisible ones. Inevitably, different analyses will analyze
different glyphs.

A given analysis must be able to distinguish different kinds of glyphs. An obvious way
is to put the analytical capability into the glyph classes themselves. For each analysis
we can add one or more abstract operations to the Glyph class and have subclasses
implement them in accordance with the role they play in the analysis.

But the trouble with that approach is that we'll have to change every glyph class
whenever we add a new kind of analysis. We can ease this problem in some cases:
If only a few classes participate in the analysis, or if most classes do the analysis the
same way, then we can supply a default implementation for the abstract operation in
the Glyph class. The default operation would cover the common case. Thus we' d limit
changes to the Glyph class and those subclasses that deviate from the norm.

Yet even if a default implementation reduces the number of changes, an insidious
problem remains: Glyph's interface expands with every new analytical capability. Over
time the analytical operations will start to obscure the basic Glyph interface. It becomes
hard to see that a glyph's main purpose is to defme and structure objects that have
appearance and shape-that interface gets lost in the noise.

SEC710N 2.8 SPELLING CHECKING AND HYPHENAnON 71

Encapsulating the Analysis

From all indications, we need to encapsulate the analysis in a separate object, much like
we've done many times before. We could put the machinery for a given analysis into
its own class. We could use an instance of this class in conjunction with an appropriate
iterator. The iterator would "carry" the instance to each glyph in the structure. The
analysis object could then perform a piece of the analysis at each point in the traversal.
The analyzer accumulates information of interest (characters in this case) as the traversal

proceeds:

The fundamental question with this approach is how the analysis object distinguishes
different kinds of glyphs without resorting to type tests or downcasts. We don't want
a Spelling Checker class to include (pseudo)code like

void Spelling Checker: :Check (Glyph* glyph) {
Character* c;
Row* r;
Image* i;

if (c = dynamic_cast<Character*>(glyph»

II analyze the character

} else if (r = dynamic_cast<Row*>(glyph»

II prepare to analyze r's children

CHAPTER 2A CASE SWD¥: DESIGNING A DOCUMENT EDl1OR72

else if (i = dynamic_cast<Image*>(glyph» {

II do nothing

This code is pretty ugly. It relies on fairly esoteric capabilities like type-safe casts. It's
hard to extend as well. We'll have to remember to change the body of this function
whenever we change the Glyph class hierarchy. In fact, this is the kind of code that
object-oriented languages were intended to eliminate.

We want to avoid such a brute-force approach, but how? Let's consider what happens
when we add the following abstract operation to the Glyph class:

void CheckMe(SpellingChecker&)

We define CheckMe in every Glyph subclass as follows:

void Glyph Subclass: :CheckMe (Spelling Checker& checker}

checker.CheckGlyphSubclass(this);

where Glyph Subclass would be replaced by the name of the glyph subclass. Note
that when CheckMe is called, the specific Glyph subclass is known-after all, we're
in one of its operations. In turn, the Spelling Checker class interlace includes an
operation like Check Glyph Subclass for every Glyph subclassl°:

clas~ Spelling Checker {
public:

SpelI ingChecker

virtual void CheckCharacter(Character*)
virtual void CheckRow(Row*);
virtual void Checklmage(Image*);

and so forth

List<char*>& GetMisspellings()

protected:
virtual bool IsMisspelled(const char*

private:
char _currentWord[MAX_WORD_SIZE]
List<char*> _misspellings;

Spell ingChecker's checking operation for Character glyphs might look some-

thing like this:
-

lOWe could use function overloading to give each of these member functions the same name, since the ii

parameters already differentiate them. We've given them different names here to emphasize their differences

especially when they're called.

SECTION 2.8 SPELLING CHECKING AND HYPHENAnON 73

void SpellingChecker::CheckCharacter (Character* c) {
const char ch = c->GetCharCode();

.currentWord
if (isalpha(ch» {

II append alphabetic character to

else {

II we hit a nonalphabetic character

if (IsMisspelled(_currentWord» {

II add _currentWord to ~isspellings

_misspel1ings.Append(_currentWord);

.currentWord[O] = ' '0' ;

II reset _currentWord to check next word

Notice we've defined a special GetCharCode operation on just the Character class.
The visitor can deal with subclass-specific operations without resorting to type tests or
casts-it lets us treat objects specially.

CheckCharacter accumulates alphabetic characters into the _currentWord buffer.
When it encounters a nonalphabetic character, such as an underscore, it uses the
IsMisspelled operation to check the spelling of the word in _currentWord}l If
the word is misspelled, then CheckCharacter adds the word to the list of misspelled
words. Then it must clear out the _currentWord buffer to ready it for the next word.
When the traversal is over, you can retrieve the list of misspelled words with the
GetMisspellings operation.

Now we can traverse the glyph structure, calling CheckMe on each glyph with
the spelling checker as an argument. This effectively identifies each glyph to the
SpellingChecker and prompts the checker to do the next increment in the spelling
check.

Spelling Checker spelling Checker,

Composition* c;

Glyph* g;
PreorderIterator i(c);

II IsMisspelled implements the spelling algorithm, which we won't detail here because we've made

it independent of Lexi's design. We can support different algorithms by subclassing Spelling Checker;
alternatively, we can apply the Strategy (315) pattern (as we did for formatting in Section 2.3) to support
different spelling checking algorithms.

74 A CASE SIVDY: DESIGNING A DOCUMENT EDITOR CHAPTER 2

for (i.Fir~
9 = i.(

g->Chec

The following interaction diagram illustrates how Character glyphs and the
Spell ingChecker object work together:

This approach works for finding speping enurs, but how does it help us sup-
port multiple kinds of analysis? It looks like we have to add an operation like
CheckMe (Spell ingChecker&) to Glyph and its subclasses whenever we add a new
kind of analysis. That's true if we insist on an independent class for every analysis. But
there's no reason why we can't give all analysis classes the same interface. Doing so
lets us use them polymorphically. That means we can replace analysis-specific oper-
ations like CheckMe (Spell ingChecker&) with an analysis-independent operation
that takes a more general parameter.

Visitor Class and Subclasses

We'll use the tenn visitor to refer generally to classes of objects that "visit" other
objects during a traversal and do something appropriate.12 In this case we can define a
Vi s i tor class that defines an abstract interface for visiting glyphs in a structure.

12 "Visit" is just a slightly more general term for "analyze." It foreshadows the terminology we use in the

design pattern we're leading to.

;t () ;

::urren

:kMe(s

.IsDo

tern()

lling

ne()

,

ChecJ

i. Next ()) {

!r)

SECI10N 2.8 SPELLING CHECKING AND HYPHENATION 75

class Visitor {

public:
virtual void VisitCharacter(Character*) {

virtual void VisitRow(Row*) { }

virtual void Visit Image (Image*) { }

II and so forth

}

Concrete subclasses of Visitor perfonn different analyses. For example, we
could have a SpellingCheckingVisitor subclass for checking spelling, and
a HyphenationVisitor subclass for hyphenation. SpellingCheckingVisitor
would be irnplemented exactly as we implemented Spell ingChecker above, except
the operation names would reflect the more general Vi s i tor interface. For example,
CheckCharacter would be called Vis i tCharacter .

Since CheckMe isn't appropriate for visitors that don't check anything, we'll give it
a more general name: Accept. Its argument must also change to take a Visitor*,
reflecting the fact that it can accept any visitor. Now adding a new analysis requires
just defining a new subclass of visitor-we don't have to touch any of the glyph
classes. We support all future analyses by adding this one operation to Glyph and its
subclasses.

We've already seen how spelling checking works. We use a similar approach
in HyphenationVisitor to accumulate text. But once HyphenationVisitor's
Visi tCharacter operation has assembled an entire word, it works a little differ-
ently. Instead of checking the word for misspelling, it applies a hyphenation algorithm
to detem1ine the potential hyphenation points in the word, if any. Then at each hyphen-
ation point, it inserts a discretionary glyph into the composition. Discretionary glyphs
are instances of Discretionary, a subclass of Glyph.

A discretionary glyph has one of two possible appearances depending on whether or
not it is the last character on a line. If it's the last character, then the discretionary looks
like a hyphen; if it's not at the end of a line, then the discretionary has no appearance
whatsoever. The discretionary checks its parent (a Row object) to see if it is the last child.
The discretionary makes this check whenever it's called on to draw itself or calculate
its boundaries. The fom1atting strategy treats discretionaries the same as whitespace,
making them candidates for ending a line. The following diagram shows how an
embedded discretionary can appear.

76 A CASE STUDY: DES'IGNING A DOCUMENT EDITOR
CHAPTER 2

...

rF====:=======iI
Ilalumlnum al-ii
II II

'.===========-=jl
'Ilo y 1.1

'I 1.1.
I ::-_-:: ::-J

or

Visitor Pattern

What we've described here is an application of the Visitor (331) pattern. The Visitor
class and its subclasses described earlier are the key participants in the pattern. The
Visitor pattern captures the technique we've used to allow an open-ended number of
analyses of glyph structures without having to change the glyph classes themselves.
Another nice feature of visitors is that they can be applied not just to composites like
our glyph structures but to any object structure. That includes sets, lists, even directed-

acyclic graphs. Furthermore, the classes that a visitor can visit needn't be related to
each other through a common parent class. That means visitors can work across class
hierarchies.

An important question to ask yourself before applying the Visitor pattern is, Which class
hierarchies change most often? The pattern is most suitable when you want to be able
to do a variety of different things to objects that have a stable class structure. Adding
a new kind of visitor requires no change to that class structure, which is especially
important when the class structure is large. But whenever you add a subclass to the
structure, you'll also have to update all your visitor interfaces to include a Visit. ..
operation for that subclass. In our example that means adding anew Glyph_subclass
called Fa a will require changingvisitor and all itssubclassestoincludeaVisitFoo
operation. But given our design constraints, we're much more likely to add a new kind
of analysis to Lexi than a new kind of Glyph. So the Visitor pattern is well-suited to our
needs.

2.9 Summary

We've applied eight different patterns to Lexi's design:

1. Composite (163) to represent the document's physical structure,

2. Strategy (315) to allow different formatting algorithms,

SECTION 2.9 SUMMARY 77

3. Decorator (175) for embellishing the user interface,

4. Abstract Factory (87) for supporting multiple look-and-feel standards,

5. Bridge (151) to allow multiple windowing platforms,

6. Command (233) for undoable user operations,

7. Iterator (257) for accessing and traversing object structures, and

8. Visitor (331) for allowing an open-ended number of analytical capabilities without
complicating the document structure's implementation.

None of these design issues is limited to document editing applications like Lexi.
Indeed, most nontrivial applications will have occasion to use many of these pat-
terns, though perhaps to do different things. A financial analysis application might use
Composite to define investment portfolios made up of subportfolios and accounts of
different sorts. A compiler might use the Strategy pattern to allow different register
allocation schemes for different target machines. Applications with a graphical user
interface will probably apply at least Decorator and Command just as we have here.

While we've covered several major problems in Lexi's design, there are lots of others
we haven't discussed. Then again, this book describes more than just the eight patterns
we've used here. So as you study the remaining patterns, think about how you might
use each one in Lexi. Or better yet, think about using them in your own designs!

