

Accredited with NAAC A+ Grade
Approved by AICTE, New Delhi, Govt. of Maharashtra
(An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Teaching Scheme and Syllabus

of

6th Semester B.Tech Biotechnology


(From Academic Year 2025-26)

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

To emerge as a learning Centre of Excellence in the National Ethos in domains of Science,

Technology and Management.

Mission of Institute

- 1. To strive for rearing standard and stature of the students by practicing high standards of professional ethics, transparency and accountability.
- 2. To provide facilities and services to meet the challenges of Industry and Society.
- 3. To facilitate socially responsive research, innovation and entrepreneurship.
- **4.** To ascertain holistic development of the students and staff members by inculcating knowledge and profession as work practices.

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

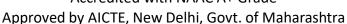
Vision of the Department

To produce competent Entrepreneurs, Researchers and industry ready Professionals in Biotechnology through quality education

Mission of the Department

- 1. To impart quality technical education and unique interdisciplinary research by merging science and technology
- 2. To make students aware about techniques of modern biotechnology and industrial advancements
- 3. To Inculcate Social and Ethical values in the students and empower them through imparting of knowledge and skills in biotechnology

Program Education Objectives (PEO)


- 1. Develop Biotechnology graduates as human resource with technical competencies and strong foundation of science and engineering.
- 2. Acquire fundamental knowledge of mathematics, Biosciences and engineering to analyze, design and implement solutions to the Biotechnological problems.
- 3. Understand emerging concepts and trends in Biotechnology and allied fields.
- 4. Apply various tools to develop innovative systems for the bioprocesses.

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Department of Biotechnology

Program Outcomes (PO)

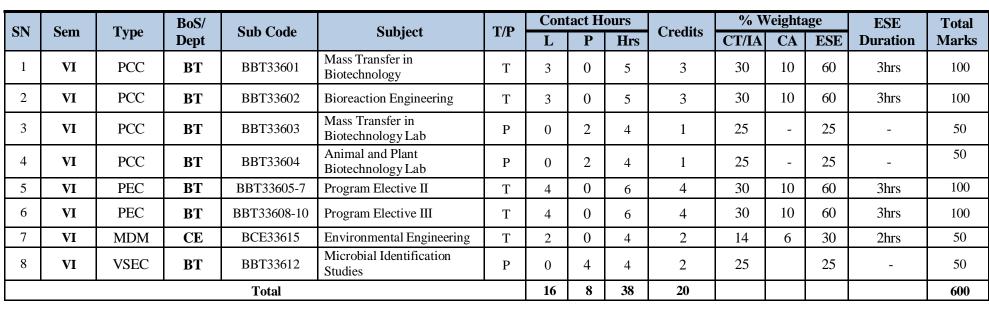
- **1. Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and software tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Lifelong learning:** Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

PSO-1: Ability to apply the acquired knowledge and recent techniques to come up with ideas in the domains of Bioprocess Engineering, Bioinformatics and Biopharmaceuticals.

PSO-2: Ability to utilize their proficiency and skills in solving real life problems in Diagnostics Genetic Engineering and Fermentation Technology using recent technologies.

PSO-3: Analyzing the impact of Biotechnology Engineering solutions in the societal and human context to create productive human resource for the country.


Tulsiramji Gaikwad-Patil College of Engineering & Technology, Nagpur

(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur) SCHEMEOFINSTRUCTION& SYLLABI

Programme: B.Tech Biotechnology

Scheme of Instructions: Third Year B.Tech. in Biotechnology (As Per NEP 2020) Semester-

VI

Course Category	BSC/ ESC (Basic Science PCC Category Course/ Engineering Science (Programme Core		(MDM) Multidisciplinary Minor/	VSEC	Humanities Social Science & Management		Experiential	CC (Co-	
Course Category	Course.)	courses	(O C) Open Elective Course	(Skill Course)	AEC(Ability Enhancement Course)	IKS(Indian Knowledge System)	Learning Courses	Curricular Courses)	
Credits	00	32	6	2	0	0	0	0	
Cumulative Sum	29	50	10	6	8	2	2	4	

PROGRESSIVE TOTAL CREDITS: 105+20=125

Chairperson

Teac

Tulsiramji Gaikwad-Patii

Applicable for AY 2025-26
Onwards

Applicable for AY 2025-26
Onwards

Principal
Onwards

Tulsiramji Gaikwad-Patii

pepartment Of Biotechnology of lege Of Engineering

plairamji Gaikwad Patil Collage Of Technology, Nagpur

Engineering & Technology, Nagpur

TGPCET, NAGPUR 1

Principal TGPCET, Nagpur

Programme: B.Tech Biotechnology

List of **Program Electives** offered by The **Biotechnology** Department

Program Elective- I	Program Elective-II	Program Elective-III	Program Elective- IV	Program Elective- V
Semester V	Semester VI	Semester VI	Semester VII	Semester VIII
BBT33507- Biopharmaceutical Technology	BBT33605- Enzyme Technology	BBT33608- Biosimilars Technology	BBT34703- Nanotechnology	BBT34706- Good Manufacturing and Laboratory Practices
BBT33508- Introduction to Bioinformatics	BBT33606- Precision Medicine Technology	BBT33609- Stem cell Technology	BBT34704- Tissue Engineering and organ Printing	BBT34707- Biosensors
BBT33509- Bioremediation and Biodegradation	BBT33607- Biofertilizer and Biopesticide technology	BBT33610- Bioenergy and Biofules	BBT34705- Industrial Microbiology and its Application	BBT34708- Pollution control and Remediation

Program: B. Tech Biotechnology

List of Open Electives offered by Biotechnology Department

Open Elective-I	Open Elective-II	Open Elective-III
Semester-III	Semester-IV	Semester-V
BBT32309: Food and Nutrition	BBT32408: Waste Management	BBT35310:Bioterrorism and National Security

Course	BSC	ESC	PCC	PEC	Multi-	VSEC	Humanities	Experiential	CC	Semester
Category	(Basic	(Engineering	(Programme	(Programme	disciplinary	(Skill	Social	Learning	(Liberal	Wise
	Science	Science	Core	Elective	courses	Course)	Science &	Courses	Learning	Credits
	Course)	Course.)	courses	courses)			Management		Courses	
Sem -I	8	5	2			2			2	22
Sem -II	8	8				2		-	2	21
Sem -III			8		-	-	4	-		20
Sem -IV			8		-	2	6			20
Sem -V			11	4	4					22
Sem -VI			8	4	4	2		2		20
Sem -VII			4	2	4			12		18
Sem -VIII			4	6	-			8		22
Cumulative	16	13	66	16	12	8	10	22	4	165
Sum										

fall	doneme	1 Banhakast	heri	Nov,2025	1.00	Applicable for AY 2025-26 Onwards
Chairperson	Dean Academics	Vice Printipal	Principal Ar Premanand Nakto	Date of Release	Version	OF:

Pepartment Of Biotechnology of lege Of Engineering

Tulsiramji Gaikwad Patil Collage Of Technology, Nagpur

Engineering & Technology, Nagpur

PCET, NAGPUR TGPCET, Nagpur

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Third Year (Semester-VI) B.Tech. Biotechnology						
	BBT33601:Mass Transfer in Biotechnology					
Teaching Scheme			Examination Sc	heme		
Lectures	3Hr/Week	7	ESE	60 Marks		
Tutorial	-		CIE	40 Marks		
Practical	-		Total	100 Marks		
TheoryCredits:3			Duration of Exa	m: 3 Hours		
Course Objectives	Course Objectives					
TD1 01 C.:						

The Objectives of this courses:

To develop a fundamental understanding of mass transfer operations—including diffusion, distillation, absorption, extraction, drying, and crystallization—with emphasis on equilibrium, rate processes, and stage-wise/continuous contacting.

1	
	Course Contents
Unit I	Molecular diffusion in fluids, Diffusion in solids. Interphase Mass Transfer, coefficient and their correlations. Concept of effective diffusivity, Diffusion through membranes and applications. Measurement of kLa . Oxygen transfer Methodology in fermenters.
Unit II	Distillation: Vapor liquid equilibrium, T-x,y and P-x,y diagrams, estimation of VLE using vapor pressure data and relative volatility. Differential distillation, Equilibrium distillation, Rectification.
Unit III	Gas Absorption: Equilibrium relationship, Mass transfer theories. Plate column for absorption, analytical and graphical calculation of number of plates. Mass transfer in packed and fluidized beds.
Unit IV	Liquid-Liquid Extraction: Equilibrium for immiscible and partially miscible systems. Supercritical fluid extraction. Concept of number of stages for co current and counter current contacting
Unit V	Drying: Characteristics of biological materials. Theory and mechanism of drying. Evaluation of drying rates. Equipment for dehydration of biological materials, Crystallization, Theory of crystallization.

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Textbooks					
T.1 —MassTransferOperations RobertE.Treybal,McGraw-Hill,3 rd Edition,1981					
T.2	"UnitOperationofChemicalEngineering McCabe,WarrenL.,JulianC.Smith, McGraw Hill Publication, New York 2004, 7th Edition.				
Reference	Reference Books				
R.1	"SeparationProcessPrinciples"byJ.D.Seader,ErnestJ.Henley,andD.KeithRoper				
R.2	"Introduction to Chemical Engineering" by S.K. Ghosal and A.K. Biswas				

Useful Links
1 https://www.sciencedirect.com/topics/physics-and-astronomy/molecular-diffusion
2 https://www.sciencedirect.com/topics/engineering/interphase-mass-transfer
3 https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Introduction_to_Solid_State_Chemistry/01: Lectures/1.09: Diffusion

After completion of this course students will able to:

Course Code	Course Outcomes	CL	Hours
BBT33601.1	Apply mass transfer principles to determine diffusivity and transfer coefficients in chemical and biological systems.	3	9
BBT33601.2	Analyze VLE data and distillation methods to estimate stages and separation efficiency.	4	9
BBT33601.3	Analyze gas absorption operations using mass transfer theories and design concepts.	4	9
BBT33601.4	Evaluate liquid—liquid extraction processes to select suitable stage arrangements.	5	9
BBT33601.5	Evaluate drying and crystallization operations to recommend appropriate process conditions and equipment.	5	9

rleac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpu Dean Academics
Fulsiramji Gaikwad-Patri
College Of Engineering
and Technology, Nagpui

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

	Th	ird Year (Se	emester-VI) B. Tech I	Biotechnolo	gy	
		BBT33	602 : Bio Reaction Engin	eering		
Teaching	Scheme			Examination Scheme		
Lectures		3 Hrs/Week		ESE	60 Marks	
Tutorial		-		CIE	40 Marks	
Practical		-		Total	100 Marks	
Theory Ci	edits :	3		Duration o	f Exam : 3 Hours	
Course Ol	jective	s				
The Object	ives of	this course is:				
To develop a comprehensive understanding of reactor design principles, including material and energy balances, performance parameters, and the analysis and evaluation of ideal and non-ideal reactors for single and multiple reactions under varying kinetic and operating conditions.						
Course Contents						
Unit I & energy balances, sing			ctor Design: Types of reac single ideal reactor, Space- duction of non-ideal flow,	time and spac		
Unit II	Ideal Reactors for a Single Reaction: Ideal Batch Reactor, Steady State Mixed Flow Reactor, Steady State Plug Flow Reactor, Problems Design for Single Reactions: Size comparison of single reactors, General graphical comparison, Multiple reactor system, Recycle reactor, Autocatalytic reactions, Problems.					
Unit III	Design for Parallel Reactions: Introduction to design of parallel reactions Qualitative and Quantitative discussion on product distribution, Contactin patterns, Reactor Size and arrangement, Selectivity, Yield, and Problems.				oution, Contacting	
Unit IV	Potpourri of Multiple Reactions: Reversible first order reaction, First order Followed by zero order reaction, Zero order followed by first order reaction, Successive reversible reactions of different orders, reversible reactions, Irreversible series-parallel reactions, Graphical representation, Denbigh reactions and their special cases, Problems.					
Unit V	reacti	on from thermon procedure, Op	ressure Effects: Single are odynamics, Equilibrium contimum Temperature Progresations, Problems.	onstant, Temp	erature, Graphical	

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Textbooks	;
T.1	Chemical Reaction Engineering, Octave Levenspiel, John Wiley & Sons, Singapore, 3 rd edition, 1998.
T.2	Elements of Chemical Reaction Engineering, Fogler H.S., Prentice-Hall, NJ, 4 th Edition, 2006.
Reference	Books
R.1	Chemical Reactor Analysis, G.F. Froment and K.B. Bischoff, JohnWiley&
	Sons, Singapore, 2 nd edition, 1990.
R.2	Chemical Engineering Kinetics, Smith J.M., McGraw-Hill, NY, 3 rd edition,
	1981

Useful Links		
1	http://digimat.in/nptel/courses/video/103106117/L02.html	
2	https://enine.digimat.in/nptel/courses/video/103101001/L03.html	

After completion of this course students will able to:

Course Code	Course Outcomes	CL	Hours
BBT33602.1	Explain reactor types and perform material/energy balances in Ideal reactors	3	9
BBT33602 .2	Analyze the performance of ideal reactors (Batch, CSTR,PFR) for a single reaction	4	9
BBT33602 .3	Evaluate parallel reaction systems in terms of selectivity, yield, and product distribution	5	9
BBT33602.4	Analyze and classify multiple complex reactions and graphical representation	4	9
BBT33602.5	Apply heat and pressure effects on reaction kinetics andreactor design	3	9

Heac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpu Dean Academics Fulsiramji Gaikwad-Patri College Of Engineering and Technology, Nagpu-

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Third Year (Semester-VI)B.Tech. Biotechnology				
BBT33603:Mass Transfer in Biotechnology Lab				
Teaching Scheme	9		Examination	Scheme
Lectures	2Hr/Week		ESE	25 Marks
Tutorial	-		CIE	25 Marks
Practical	-		Total	50 Marks
Practical Credits:1			Duration of I	Exam: 2Hours

CourseObjectives

The Objective of this courses:

To provide students with hands-on experience in analyzing diffusion, mass transfer, and separation processes through experiments involving drying, absorption, extraction, distillation, crystallization, and related operations.

Sr.No.	Experiments (Minimum 8 experiments should be performed)			
1	Determination of diffusion coefficient of an organic vapor (acetone) in air.			
2	Determination of Effective Diffusivity in a Solid.			
3	Examination of the drying characteristics of a given material under constant drying conditions and determination of equilibrium and critical moisture content.			
4	Gas Absorption in a Packed Column: Determination of Height of Transfer Unit (HTU) and Height Equivalent to a Theoretical Plate (HETP).			
5	Determination of Mass Transfer Coefficient in a Fluidized Bed Adsorption System.			
6	Determination of the mass transfer coefficient for the absorption of water vapor on silica gel.			
7	Analysis of the variation of mass transfer coefficient as a function of flow rate of air for the vaporization of naphthalene in a packed bed.			
8	Diffusion Through a Membrane: Determination of Permeability of a Dialysis Membrane Using a Dye or Salt Solution.			
9	Estimation of the rate constant for the physical dissolution of benzoic acid in a liquid.			
10	Determination of the diffusion coefficient for the given liquid–liquid system as a function of concentration.			
11	Liquid–Liquid Extraction: Determination of the Partition Coefficient (K _e) of Acetic Acid Between Water and Butanol.			
12	Estimation of <i>kLa</i> for air/oxygen absorption in nature.			
13	Examination of crystallization phenomena in batch crystallization.			
14	To find the mass transfer coefficient in a wetted wall column.			
15	To verify Rayleigh's Equation for Simple Distillation.			

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Textbooks			
T.1	Mass Transfer Operations by Robert E. Treybal		
T.2	Mass Transfer: Theory and Applications by K.V. Narayanan & B. Lakshmikutty		
Referenc	Reference Books		
R.1	"SeparationProcessPrinciples"byJ.D.Seader,ErnestJ.Henley,andD.KeithRoper		
R.2	"IntroductiontoChemicalEngineering"byS.K.GhosalandA.K.Biswas		

UsefulLinks		
1	https://www.sciencedirect.com/topics/physics-and-astronomy/molecular-diffusion	
2	https://www.sciencedirect.com/topics/engineering/interphase-mass-transfer	
3	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Introduction_to_Solid_State_Chemistry/01:_Lectures/1.09:_Diffusion	

After completion of this course students will able to:

Course Code	CourseOutcomes	CL	Hours
BBT33603.1	Apply diffusion and mass transfer principles to estimate key transport parameters in gas, liquid, and solid systems.	3	9
BBT33603.2	Apply experimental methods to determine drying behavior, dissolution rates, and oxygen transfer characteristics.	3	9
BBT33603. 3	Analyze mass transfer operations such as absorption, extraction, and distillation using experimental data.	4	9
BBT33603.4	Evaluate the performance of packed beds, fluidized beds, membranes, and wetted-wall columns.	5	9
BBT33603. 5	Assess crystallization and phase-change experiments to derive critical process parameters.	5	9

Department Of Biotechnology Tuleiramji Gaikwad Patil Collage Or Engineering & Technology, Nagp:

Dean Academics Tulsiramji Gaikwad-Patii College Of Engineering and Technology, Nagpu-

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Third Year (Semester-VI) B.Tech. Biotechnology					
BBT33604:Animal and Plant Biotechnology Lab					
Teaching Scheme Examination Sc					
Lectures	2Hr/Week		ESE	25 Marks	
Tutorial	-		CIE	25 Marks	
Practical	-		Total	50 Marks	
Practical Credits: 1			Duration of E	xam: 2 Hours	

Course Objectives

The Objective of this course is:

To provide comprehensive knowledge of animal and plant biotechnology, including fundamental concepts, key techniques, and their application in culturing, propagating, and maintaining plant and animal cells.

Sr. No.	Experiments (Minimum 8 practical's should be performed)
1	Sterilization techniques, membrane filtration.
2	Preparation of media
3	Surface sterilization of explants.
4	Callus induction, initiation in suspension culture.
5	Role of hormones in plant morphogenesis.
6	Regeneration of shoot and roots from callus culture.
7	Hardening of plantlets.
8	Establishing a primary cell line.
9	Sub-culturing of cells
10	Trypan blue dye exclusion assay for cell viability in animals.
11	In Vitro Seed Germination on Sterile MS Medium
12	Leaf Disc Culture for Indirect Organogenesis
13	Effect of Different Sugar Concentrations on In Vitro Shoot Growth
14	Preparation and Sterilization of Animal Cell Culture Glassware &Plasticware
15	Calculation of Cell Count Using Hemocytometer (Without Viability Test)

Textbooks		
T.1	"Plant Tissue Culture: Techniques and Experiments" by Roberta H. Smith	
T.2	"Animal Cell Culture: Essential Methods " by John M. Davis	
Reference Books		
R.1	"Plant Propagation: Principles and Practices" by Hudson T. Hartmann and Dale E. Kester	
R.2	"Transgenic Animal Technology: A Laboratory Handbook " by Carl A. Pinkert	

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Useful Links		
1	https://www.researchgate.net/publication/371875460_Industrial_Biotechnology_Downstream_processing	
2	https://agsci.psu.edu/digital-education/academic/syllabi/abe-888	
3	https://handbook.unimelb.edu.au/2024/subjects/chen90035	

After completion of this course students will able to:

Course Outcomes			Hours
BBT33604.1	Explain the basic principles of animal and plant Biotechnology.	2	9
BBT33604. 2	Illustrate basic techniques for preparation of different media for plant and animal cell culture.	3	9
BBT33604. 3	Demonstrate techniques for propagation and maintenance of animal and plant cells.	3	9
BBT33604.4	Classify different techniques used in production of transgenic plants and animals.	4	9
BBT33604.5	Select proper culture techniques for propagation of transgenic plants and animals.	5	9

deac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpu Dean Academics
Fulsiramji Gaikwad-Path
College Of Engineering
and Technology, Nagpu

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur) G

Third Year (Semester-VI) B.Tech. Biotechnology						
BBT33605: PE-II: Enzyme Technology						
	Teaching Scheme Examination Scheme					
Lectures 4Hr/Week				ESE	60 Marks	
Tutorials				CIE	40 Marks	
Practical				Total	100 Marks	
Th	eory (Credits: 4			Duration of Exam: 3 Hours	
Course O	•					
_		•	erstanding of enzymes,	•		oncepts,
Course Co			eir industrial and clinic	al applications	S	
Course Co			D.::-£1::-4	1-4 0 -1-	:C	1
Unit1			ne: Brief history, nome cock-Key hypothesis, T			
Omti			Abzymes, Allosteric e		stabilization hyp	Journesis,
	·	•	gle substrate steady sta		chaelisMenten ec	nuation Linear
Unit2			nethod; Inhibitors and a			•
Omt2	_		uation, Sigmoidal kine		•	mis, ping-pong
	inicci	idinishi, moorty eq	aation, orginoidar kine	iles una most	eric chzymes	
	Enzy	me immobilizati	on: Methods of immobi	lization of enz	zymes-physical &	chemical
Unit3	techr	niques, Kinetics of	immobilized enzyme,	Effect of exter	nal mass transfer	& intra-
	parti	cle diffusion, limit	ation & applications of	immobilized of	enzymes, Bioreac	etors using
	imm	obilized enzyme.				
	Extr	action and Purifi	cation of Enzymes: M	ethods of prod	uction of enzyme	es, Extraction of
Unit4	Enzy	mes –soluble enzy	mes – membrane boun	d enzymes – l	Nature of extraction	on medium –
	purif	ication of enzyme	–criteria of purity –De	termination of	molecular weigh	at of enzymes.
	Indu	strial and Clinica	al uses of Enzymes (A)	plied Enzym	ology): Industria	1 Enzymes-
			amylases, lipases, pro	-		•
	enzy	mes used in variou	s fermentation process	es.		
Unit5	G1: .	1 5	4 1 2	, , , , , ,	.	
		<u> </u>	mes as thrombolytic a		• •	
	_	•	nes etc Immobilization	•	ELIZA. Enzyme l	Engineering
	and s	site directed mutag	enesis, Designer enzyn	ies		

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

	Textbooks				
T.1	—Enzyme Technology" by Martin F. Chaplin and Christopher Bucke Cambridge University Press				
Т.2	—Biotechnology: Enzymes and Bioprocessing" by H.J. Rehm and G. Reed (Vol. 7a & 7b of Biotechnology series)				
	Reference Books				
R.1	Biocatalysis and Enzyme Technology" by Klaus Buchholz, Volker Kasche, and Uwe Theo Bornscheuer.				
R.2	Biocatalysis and Enzyme Technology" by Klaus Buchholz, Volker Kasche, and Uwe Theo Bornscheuer				

	Useful Links				
1	https://pubmed.ncbi.nlm.nih.gov/37945176/				
2	https://www.ncbi.nlm.nih.gov/books/NBK554481/				
3	https://pubs.acs.org/doi/10.1021/acsomega.2c07560				
4	https://pmc.ncbi.nlm.nih.gov/articles/PMC4692135/				

After completion of this course students will able to:

Course Code	Course Outcomes	CL	Class Sessions
BBT33605.1	Explain enzyme classification, components, and basic mechanisms of enzyme action.	2	9
BBT33605.2	Illustrate enzyme kinetic principles, including Michaelis–Menten behavior, inhibition, and allosteric regulation.	3	9
BBT33605. 3	Analyze enzyme immobilization methods and mass-transfer effects in bioreactor applications.	4	9
BBT33605.4	Classify enzyme production, extraction, and purification techniques using biochemical analytical methods.	4	9
BBT33605.5	Summarize industrial and clinical applications of enzymes and basic enzyme engineering strategies.	5	9

Dean Academics
rulsiramji Galkwad-Pati
College Of Engineering
and Technology, Nagpu

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

	Third Year (Semester-VI) B.Tech. Biotechnology						
	BBT33606: PE-II: Precision Medicine &Wellness						
	Teaching Scheme Examination Scheme						
Le	Lectures 4Hr/Week			ESE	60 Marks		
Tı	utorial	-		CIE	40 Marks		
Pr	actical	-		Total	100 Marks		
	Theory Cr	edits: 4		Duration of I	Exam: 3 Hours		
Course	Objectives						
The Obj	ective of this	s course is:					
mechani	isms, biomar	ker identification		for understanding disea of genetic screening and			
pharmac	cogenomics i	n healthcare.					
			Course Contents				
Unit I	Use of genomics, transcriptomics, proteomics and metabolomics in understanding disease conditions. Biomarker identification and validation of a disease state.						
Unit II	Human Ger genetic vari		ncer genome project. I	Different types of geneti	c and non-		
	Genetic scr	eening and diagr	osis: prenatal carrier to	esting and newborn scre	ening for		
Unit III	Mendelian	diseases. Pharma	cogenomic testing for	drug selection, dosing a	and		
	Predicting a	ndverse effects of	commonly prescribed	drugs,			
				of focus to rare disease			
T . • 4 TT 7				tative cases rare disorde			
Unit IV	EpidermolysisBullosa, Pompe, Fabry, Friedreich's Ataxi. Modern approaches to target rare disorders, Globaland National Policy for research on rare diseases.						
Unit V	Ethical, legal, and social implications of health privacy and policy laws for precision medicine. Ayurveda system of <i>Prakriti</i> and <i>Agni</i> .						

Textbooks				
T.1	—Introduction to Genomics & quot; by Arthur M. Lesk, 4th Edition, 2025.			
T.2	T.2 "The Human Genome Project: What Does Decoding DNA Mean for Us?" by Kevin A. Boon 1 st edition, 2002.			
Reference Books				
R.1	"Transcriptomics: Methods and Protocols" edited by Michael J. Dyer.			
R.2	R.2 "Principles of Proteomics" by Richard Twyman 2nd Edition, 2014.			
R.3	"Metabolomics: From Fundamentals to Clinical Applications" edited by Alessandra Sacco 1st Edition, 2017.			

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

R.4	"Ethical, Legal, and Social Issues in Medicine" by Marcia Angell and Donald W. Light 2 nd Edition 2007.
R.5	"The Ayurveda Encyclopedia: Natural Secretsto Healing, Prevention, and Longevity" by Swami Sadashiva Tirtha, B. Jain Publishers, 2023.

Useful Links				
1	1 <u>https://www.genome.gov/human-genome-project</u>			
2	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860823/			
3	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221079/			

After completion of this course students will able to:

Course Outcomes			Hours
BBT33606.1	Determine the fundamental concepts of major genome projects and differentiate between the various types of genetic variations.	3	9
BBT33606.2	Apply omics technologies (genomics, proteomics, etc.) to investigate disease mechanisms and stratify patients based on biomarkers.	3	9
BBT33606.3	Analyze the concept, classification, and representative examples (e.g.,Pompe, Fabry) of rare and orphan disorders, including modern therapeutic approaches and global research policies.	4	9
BBT33606.4	Evaluate genetic screening and pharmacogenomic testing strategies for diagnosing and personalizing treatment for Mendelian diseases.	5	9
BBT33606.5	Justify the ethical, legal, and social implications (ELSI) of health privacy laws and compare them with Ayurvedic principles in precision medicine.	5	9

Heac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpu Dean Academics
Fulsiramji Gaikwad-Patri
College Of Engineering
and Technology, Nagpu-

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

		Third Year	(Semester-VI)	3.Tech. Biote	echnology	
]	BBT33607: PE-	II: Biofertilizer a	nd Biopestici	de Technology	
	Teaching Scheme Examination Sche					nation Scheme
Le	ectures	4Hrs/Week			ESE 60 M	
Tu	torials				CIE 40 1	
Pr	actical				Total	100 Marks
	TotalC	redits:4			Duration of 1	Exam: 3 hours
Cour	se Obje	ctives				
The o	bjective	s of this course are	> -			
including taxonomy	Rhizob , physic	ium, free-living a	lge of biofertilizers bad symbiotic nitrogections, and the technic	n fixers, and my	corrhizal associa	tions—their
			Course Cor	tents		
Unit1	Biofertilizers – Definition, kinds, microbes as biofertilizers, Symbiotic associates – Rhizobium taxonomy, Physiology, Host cell – Rhizobium interactions, mass cultivation, inoculants and serology.					
Unit2	Frankia woodland and Actinorhizal nitrogen fixing plants and its host plants, characteristics, identification, cultural method and maintenance of Azospirillum, Azotobacter, Azolla and anabaena.					
Unit3	Unit3 Mycorrhiza - VAM association, types, occurrence, Collection, isolation and inoculum production, Structural components of VAM fungi, Life cycle of VAM fungi, Host-fungus signaling pathway.					
Unit4	Large scale production of biofertilizer, Organic farming Carrier materials, general outline of microbes as fertilizers, Rhizosphere effect microbial products influencing plant growth.					
Unit5	Biopesticides—Definition, kinds and commerce of biopesticide, Bacillusthuringiensis, insect viruses and entomo pathogenic fungi – its characteristics, physiology, mechanism of action and application.					

	Textbooks			
T1				
T2	Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology by Ajit Varma and Bertold Hock 1 st Edition 1995.			
	Reference Books			
R1	Azospirillum / Plant Associations by Yaacov Okon CRC Press ISBN: 0849349257 / 9780849349256.			
R2	The Mycota. IV Environmental and Microbial Relationships by D. T. Wicklow and Bengt Söderström 1 st Edition 1997.			
	Useful Links			
1	http://www.digimat.in/nptel/courses/video/102105058/L55.html			
2	https://archive.nptel.ac.in/courses/102/105/102105058/			
3	https://ggsestc.digimat.in/nptel/courses/video/102103555/L25.html			

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

After completion of this course students will able to:

Course Code	ourse Code Course Outcomes		Class Sessions
BBT33607.1	Discuss major biofertilizer microbes and explain their physiology and symbiotic interactions with host plants.	2	9
BBT33607. 2	Demonstrate cultural and maintenance techniques for effective cultivation of Azotobacter, Azolla, and Anabaena.	3	9
BBT33607. 3	Apply appropriate methods for isolation, inoculum production, and large-scale cultivation of mycorrhizae and other biofertilizer organisms	3	9
BBT33607.4	Classify the role of rhizosphere microbial products and carrier materials in organic farming and plant growth promotion	4	9
BBT33607.5	Evaluate the characteristics, physiology, and mechanisms of action of biopesticides such as <i>Bacillus thuringiensis</i> and insect viruses used in pest management.	5	9

Heac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpi: Dean Academics
Fulsiramji Gaikwad-Patri
College Of Engineering
and Technology, Nagpui

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

	Thi	ird Year (Se	nester-VI) B.Teo	ch. Biotecl	hnology	
		BBT33608	PE-III: Biosimilar	r Technolog	y	
Teaching Scheme					Examination Scheme	
Lectur	es	4Hr/Week			ESE	60Marks
Tutori	al	-			CIE	40Marks
Practio	al	-			Total	100Marks
The	ory Cre	edits: 4	Duration of Exam: 3Ho		Exam: 3Hours	
Course Obje	ectives					
The Objectiv	e of this	course is:				
therapeutic	applicati	ions, developme in their characte	tanding of biosimila nt challenges, and the rization, optimization	he key scient	tific and reg	ulatory
	1		Course Contents			
Introduction to Biosimilars:						
		evolution of biosimilars, The concept of biological equivalence,				
		omparison of Biologics and small molecule drugs.				
		Biotherapeutics and Their Applications: Types of biotherapeutics(peptides,				
Unit II	antibodies, enzymes etc.), Applications of biotherapeutics in various diseases, Limitations and challenges in biotherapeutic development.					
			nent Process: Overvi	_		elopment
	process, Key steps in biosimilar development (characterization,					
Unit III	optimization, manufacturing, and clinical trials), Comparison of biosimilar					
	devel	evelopment with small molecule drug development, Regulatory aspects of				
	Biosi	milardevelopme	nt.			
	Challenges and Opportunities in Biosimilar Development: Market					
Unit IV	competition and competition for biosimilars, Regulatory challenges and					
Omtiv	appro	approval processes, Manufacturing and analytical methods for biosimilars,				
	Pater	nt landscape and	Intellectual property	y considerati	ons.	
			ure Prospects: Case			
Unit V			ent programs, Emerg			
	biosi	milar technolog	y, The role of biosim	nilars in acce	ess to afford	able

Health care and sustainability of the biopharmaceutical industry.

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

	Textbooks				
T.1	"Biosimilars: A New Generation of Biologics" by Sarfaraz K. Niazi 1 st Edition 2017.				
T.2	"Biopharmaceuticals: Biochemistry and Biotechnology" by Gary Walsh 2 nd Edition 2003.				
Reference Books					
R.1 "Biosimilars and Interchangeable Biologics: Tactical Elements" by Sarfaraz K. Niazi 2 nd Edition 2025.					
R.2	"Biosimilars and Follow-On Biologics: Regulatory, Clinical, and Biopharmaceutical Development" by Sarfaraz K. Niazi 1 st Edition 2018.				

	Useful Links		
1	https://www.iqvia.com/solutions/therapeutics/biosimilars		
2	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423073/		
3	https://www.nature.com/articles/d42473-019-00145-0		

After completion of this course students will able to:

Course Code	Course Outcomes		Hours
BBT33608.1	Describe the concept of biosimilars, their revolution, and comparison withsmall molecule drugs.	2	9
BBT33608 .2	Classifybiotherapeutics types, their applications, and recognizeDevelopment challenges.	2	9
BBT33608 .3	Comprehend biosimilar development steps, regulatory aspects, and compare with small molecule drugs.	3	9
BBT33608.4	Analyzebiosimilar development challenges, including marketCompetition and regulatory hurdles.	4	9
BBT33608.5	Evaluate biosimilar case studies, prospects, and their role inhealthcare accessibility.	5	9

Heac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpu Dean Academics
Fulsiramji Gaikwad-Patri
College Of Engineering
and Technology, Nagpui

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

	Thi	ird Year (Se	nester-VI) B.Tech. I	Biotechnology		
		BBT33609	: PE-III: Stem Cell Tec	hnology		
Teaching Scheme Ex					xamination Scheme	
Lectur	es	4Hr/Week		ESE	60 Marks	
Tutori	al	-		CIE	40 Marks	
Practic	al	-		Total	100 Marks	
The	ory Cre	edits: 4		Duration of 1	Exam: 3 Hours	
Course Obje	ectives					
The Objective	e of this	course is:				
properties, the	heir nich	ne-specific func	tanding of stem cell biolo tions, therapeutic applicat Il considerations.			
			Course Contents			
Unit I			Cells: Principles & Propo		, Types	
0 220 2			arison of Embryonic & A			
Unit II			oduction to stem cell nich	es in gut epithelium	n, bone	
	marrow, epidermis, testis & neural tissues.					
		-	n- Stem cells derived from			
	· ·		e, germ cells, hematopoie	•	•	
Unit III	Bone marrow & cord blood collection procedures, cryopreservation, & their					
		applications. Cord blood transplantation, donor selection, HLA matching,				
	Patient selection, peripheral & bone marrow transplantation.					
			ds- isolation & differentia			
Unit IV		•	n cells, mouse stem cells.	Stem cell techniqu	es- FACS,	
		tagging.				
			cells: Stem cell application			
Unit V			strophy, stem cell regulat	ions- debate, social	& ethical	
	conce	erns.				

	Textbooks				
T.1	Stem cells by C.S Potten., Elsevier, 2006.				
T.2	Essentials of Stem Cell Biology by Robert Lanza., 4 th edition. Elsevier 2014.				
	Reference Books				
R.1	R.1 AriffBongso, EngHin Lee, "Stem Cells: From Bench to Bedside," World Scientific, 2011.				
R.2	Daniel R. Marshak, "Stem cell biology," Cold Spring Harbor Laboratory Press, 2001.				

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

2 operations of 21steering ag					
	Useful Links				
1	https://nptel.ac.in/courses/102106068				
2	https://nptel.ac.in/courses/102106035				
3	https://nptel.ac.in/courses/102106083				

After completion of this course students will able to:

Course Code	Course Outcomes		Class Sessions
BBT33609.1	Interpret the basic concepts of stem cells.	2	9
BBT33609.2	Comprehend the microenvironments or niches that support stem cell maintenance and differentiation	3	9
BBT33609. 3	Acquire the knowledge of the transformation and protein expression in chloroplasts	2	9
BBT33609.4	Demonstrate the experimental Methods, isolation& Differentiation of stem cells	3	9
BBT33609.5	Interpret the knowledge of stem cells in treating various diseases such as cancer, diabetes,	3	9

Heac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpu Dean Academics
Fulsiramji Gaikwad-Patri
College Of Engineering
and Technology, Nagpui

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

	Thir	d Year (Sen	nester-VI) B. Tecl	n Biotechnology	
		BBT33610:	PE-III: Bioenergy a	nd Biofuels	
Teachin	ching Scheme			Examinati	on Scheme
Lectures	5	4 Hrs/Week		ESE	60 Marks
Tutorial		-		CIE	40 Marks
Practica	1	-		Total	100 Marks
Theory	Credits : 4			Duration of Hours	of Exam: 3
Course	Objectives				
The Obje	ective of this co	ourse is:			
•		•	rgy sources and bioma		0
the produ	action of major	biofuels and th	eir applications, susta	inability aspects, and	l future trends.
			Course Contents		
Unit 1	Overview of global energy demand and the role of renewable energy, Classification of bioenergy resources — solid, liquid, and gaseous fuels, Types of biomass — lignocellulosic biomass, algae, energy crops, and agricultural residues, Thermochemical and biochemical conversion technologies for bioenergy production, Advantages and limitations of bioenergy systems.				of biomass – ltural residues,
Unit 2	Biomass Conversion Technologies Thermochemical conversion – combustion, pyrolysis, and gasification processes Biochemical conversion – anaerobic digestion and fermentation, Characteristics and preprocessing of biomass feed stocks, Comparison of conversion technologies in terms of efficiency and environmental impact, Recent advancements in integrated bio refineries.			naracteristics and nologies in terms	
Unit 3	Biogas and Bio hydrogen Production Principles of anaerobic digestion, Microbial consortia involved and stages of biogas				
Unit 4	BioEnergy, Sustainability & Future Prospective Bioethanol production from sugar, starch, and lignocellulosic materials, Pretreatment, hydrolysis, fermentation and distillation techniques. Biodiesel production through				
Unit 5	Applications Environment and policy is	of biofuels in all impact and ssues related to ent trends and f	y, and Future Perspont transport, power go life cycle assessment bioenergy adoption, uture scope of bioener	eneration, and rural (LCA) of biofuels, Global bioenergy so	Socio-economic cenario and case

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Textbo	oks
T.1	Anju Dahiya, <i>Bioenergy: Biomass to Biofuels and Waste to Energy</i> , 2nd Edition, Academic Press, 2020
T.2	Godfrey Boyle, <i>Renewable Energy: Power for a Sustainable Future</i> , 4 th Edition, Oxford University Press, 2017
Refere	nce Books
R.1	Jay Cheng (Ed.), <i>Biomass to Renewable Energy Processes</i> , 2 nd Edition, CRC Press, 2017
R.2	Ashok Pandey, Christian Larroche, Steven C. Ricke, Claude-Gilles Dussap, Edgard Gnansounou (Eds.), <i>Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels</i> , 2 nd Edition, Academic Press, 2019

	Useful Links			
1	https://link.springer.com/article/10.1007/s10311-021-01273-2			
2	https://pmc.ncbi.nlm.nih.gov/articles/PMC6045967/			
3	https://link.springer.com/chapter/10.1007/978-3-319-11906-9_6			

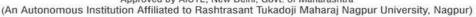
After completion of this course students will able to:

Course Outcomes		CL	Class sessio ns
BBT33610.1	Explain the types and significance of bioenergy and biomass resources.	2	9
BBT33610 .2	Explain various biomass conversion technologies and their industrial relevance	2	9
BBT33610 .3	Analyze the microbial processes involved in biogas and bio hydrogen production	4	9
BBT33610.4	Compare the production methods of bioethanol and biodiesel	4	9
BBT33610.5	Evaluate the sustainability and applications of biofuels in real- world scenarios	5	9

Heac

Department Of Biotechnology Fulsiramji Gaikwad Patil Collage Or Engineering & Technology, Nagpi: Dean Academics Fulsiramji Galkwad-Patri College Of Engineering and Technology, Nagpu-

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)


	T	hird Year (S	emester-VI) B.Tech.	Biotechnology		
		BCE3	615:Environmental Engi	neering		
	Teaching Sch	eme		Examina	tion Scheme	
Lectures		2Hr/Week		ESE	30 Marks	
T	Tutorial -			CIE	20 Marks	
P	ractical	-		Total	50 Marks	
	TheoryCredi	ts:2		Duration of	Exam: 3Hours	
Course (Objectives			•		
To under	stand the import	ance and neces	sity of water and water sup	oply scheme and trea	atment of water.	
	Introduction	• Importance a	nd necessity of a water sup	nly scheme		
		•	of water demand, empirical		iffecting per	
		• •	demand, design period, por		• 1	
Unit I	examples.			<i>B</i>		
	_	ater: Rainwate	er, Ground water-springs, in	nfiltration galleries,	dug wells, tube	
			lake, river, impounding re			
	Intake struc	tures: Location	n, types-river, lake, canal, re	eservoir etc.		
	_		es of pipes, joints, fittings,			
	1	-	riction, Manning's, Darcy-	Weishbach& Hazen	-William's equation	
Unit 2	_	and problem.				
	_		oncept of rising main, Clas	ssification, working,	merits and	
	demerits, selection of pumps.					
	Water quality: Physical, Chemical and bacteriological characteristics of water, Health					
	effects of various water characteristics, Standards of drinking water (WHO 2011, CPHEOO,					
	IS 10500). Waterborne diseases					
	Water treatment: Objective of treatment, unit operations and processes, household &					
Unit 3	community based rural water treatment, decentralized water treatment, flow sheet of					
	conventional water treatment plant.					
	Aeration: Purpose, types of aerators, design of cascade aerator.					
	Coagulation and Flocculation: Definition, Principles, types of coagulants and reactions, coagulant doses, types of mixing and flocculation devices.					
					ments simple design	
	Sedimentation: Principles, types of setting basins, inlet and outlet arrangements, simple design of sedimentation tank.					
Unit 4	Clarifloccular filters-RSF, S	ators: Principle SSF, Pressure f	es and operation. Filtration lters, elements of filters and and RSF, Membrane filtrat	d specification, oper	rational problems	

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra

Department of Biotechnology

Unit 5

Disinfection: Purpose, Mechanism, criteria for good disinfectants, various disinfectants, their characteristics, disinfection by chlorination using different forms of chlorine. Types of chlorination. Distribution systems: Requirements of a good distribution system, methods of distribution systems and layouts, Leakage and leak detector, Study of fire hydrants. Storage reservoirs for treated water: Types, capacity of reservoir, mass curve. Miscellaneous Methods of Water Treatment: Color, Odors & Taste removal, removal of iron & manganese - water softening processes, base exchange process, swimming pool water treatment.

	Textbooks				
T.1	Water and Wastewater Engineering - G. M. Fair, J.C. Geyer & D.A. Okun, Wiley				
	Publication, 1971 edition				
T.2	Water supply and Sanitary Engineering - Birdie G.S., DhanpatRai Publication,				
	2010 edition				
T.3	Environmental Engg. I-P.N.Modi, Standard BookHouse,5 th edition,2018				
	Reference Books				
R.1	Water Supply and Sanitary Engineering–S.C. Rangwala, Charotar Publishing House, 2005 edition				
R.2	Water supply and sewage-M.J.Mcghee,Mc.GrawHill,6 th edition,1991				
R.3	Environmental Pollution Control EnggC.S.Rao, New Age International Publishers,3 rd edition, 2018				

Ī	Useful Links		
Ī	1	https://nptel.ac.in/courses/105/105/105105201/	
Ī	2	https://nptel.ac.in/courses/105/106/105106119/	

After completion of this course students will able to:

Course Code	Course Outcomes	CL	Class sessions
BCE33615.1	Describe the importance of water supply systems, water demand types, sources, and intake structures.	2	8
BCE33615.2	Apply population forecasting, empirical formulas, and hydraulic equations to estimate water demand and design conveyance systems.	3	9
BCE33615.3	Analyze water quality parameters and interpret drinking water standards to assess potability.	4	10
BCE33615.4	Analyze water quality parameters and interpret drinking water standards to assess potability processes for different field conditions.	5	8
BCE33615.5	Assess an integrated water treatment and supply scheme including intake, conveyance, treatment, and distribution.	5	10

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

Third Year (Semester-VI) B.Tech. Biotechnology					
	BBT33612: Microbial Identification studies Lab				
Teaching	Scheme		Examination Scheme		
Lectures	2Hr/Week		ESE	25 Marks	
Tutorial	-		CIE	25 Marks	
Practical	-		Total	50 Marks	
Practical Credits: 2			Duration of Exam: 2 Hours		

Course Objectives

The Objective of this course is:

To gain basic knowledge about different types of identification techniques used in microbiology

Sr. No.	Experiments (Minimum 8 practical's should be performed)
1	Endospore staining of given bacterial culture.
2	Catalase test for production of catalase enzymes.
3	Coagulase test for staphylococcus.
4	Acid fast staining for mycobacterium.(Ziehl- Neelson staining)
5	Oxidase test for detection of cytochrome c oxidase.
6	Capsule staining of given bacterial culture
7	Simple staining of given bacterial culture.
8	Dot ELISA test for detection of antigen.
9	Total viable count of bacteria in given sample.
10	antibiotic sensitivity assay.
11	Test of sterility of given pharmaceutical product using membran filtration.
12	Minimum inhibitory concentration (MIC) testing.
13	Bacterial endotoxin testing in given pharmaceutical product
14	To evaluate efficacy of preservatives in pharmaceutical product
15	Enumeration of microorganisms in water used in pharmaceutical industry.

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Biotechnology

	Textbooks		
T.1	Microbiology: An Introduction – Tortora, Funke & Case, Gerard J. Tortora, Berdell Funke, Christine Case, 12th Edition, 2016		
T.2	Bailey & Scott's Diagnostic Microbiology, Patricia Tille, 14th Edition, 2017		
T.3	Block's Disinfection, Sterilization, and Preservation, Seymour Block, 5th Edition,2001		

	Reference Books		
R.1	Bergey's Manual of Systematic Bacteriology-George M. Garrityetal.		
R.2	Manual of Clinical Microbiology-American Society for Microbiology(ASM)		

	Useful Links				
1	https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.016949-0				
2	https://journals.asm.org/doi/10.1128/jcm.40.6.1887-1891.2002				

After completion of this course students will able to:

Course Code	Course Outcomes	CL	Class Sessions
	Explain basic microbial staining and biochemical identification		
BBT33612.1	methods.	2	10
	Apply standard microbiological assays such as ELISA, viable		
BBT33612 .2	count, MIC, and antibiotic sensitivity tests.	3	10
BBT33612 .3	Evaluate sterility, contamination, endotoxins, and preservative effectiveness in pharmaceutical products.	4	10

Department Of Biotechnology
Fulsiramji Gaikwad Patil Collage Or
Engineering & Technology, Nagpi:

Dean Academics Fulsiramji Gaikwad-Path College Of Engineering and Technology, Nagpu-