
 Tulsiramji Gaikwad-Patil College of Engineering & Technology 

             Department of Master in Computer Application 

                                                   Subject Notes 

                    Academic Session: 2018 – 2019 

                          Subject:DDBMS   

Semester: I                                                                                    UNIT: I 

 

 

 

1. List the promise of DDBMS . Explain how DDBMS provides 

the separation of higher level semantics from lower level 

implementation issues. 
 

In previous sections we discussed various possible forms of transparency within a 

distributed computing environment. Obviously, to provide easy and efficient access by 

novice users to the services of the DBMS, one would want to have full transparency, 

involving all the various types that we discussed. Nevertheless, the level of transparency 

is inevitably a compromise between ease of use and the difficulty and overhead cost of 

providing high levels of transparency. 

 
What has not yet been discussed is who is responsible for providing these services. It 

is possible to identify three discussed is who is responsible for providing these services. It 

is possible to identify three distinct layers at which the services of transparency can be 

provided. It is quite common to treat these as mutually exclusive means of providing the 

service, although it is more appropriate to view them as complementary. 

 

We could leave the responsibility of providing transparent access to data resources to 

the access layer. the transparency features can be built into the user language, which then 

translates the requested services into required operations. In other words, the complier or 

the interpreter takes over the task and no transparent service is provided to the 

implementer of the compiler or the interpreter. 

 

The second layer at which transparency can be provided is the operating system level. 

State-of-the-art operating systems provide some level of transparency to system users. 

For example, the device drivers within the operating system handle the minute details of 

getting each piece of peripheral equipment to do what is requested. The typical computer 

user, or even an application programmer, does not normally write device drivers to 

interact with individual peripheral equipment; that operation is transparent to the user. 

 

Providing transparent access to resources at the operating system level can obviously 

be extended to the distributed environment, where the management of the network 

resource is taken over by the distributed operating system. This is a good level at which 



to provide network transparency if it can be accomplished. The unfortunate aspect is that 

not all commercially available distributed operating systems provide a reasonable level of 

transparency in network management. 

 

The third layer at which transparency can be supported is within the DBMS. The 

transparency and support for database functions provided to the DBMS designers by an 

underlying operating system is generally minimal and typically limited to very 

fundamental operations for performing certain tasks. It is the responsibility of the DBMS 

to make all the necessary translation from the operating system to the higher-level user 

interface. This mode of operation is the most common method today. There are, however, 

various problems associated with the interaction of the operating system with the 

distributed DBMS and are discussed throughout this book. 

 

 It is therefore quite important to realize that reasonable levels of transparency 

depend on different components within the data management environment. Network 

transparency can easily be handled by the distributed operating system part of its 

responsibilities for providing replication and fragmentation transparencies (especially 

those aspects dealing with transaction management and recovery). The DBMS should be 

responsible for providing a high level of data independence together with replication and 

fragmentation transparencies. Finally, the user interface can support a higher level of 

transparency not only in terms of a uniform access method to the data resources from 

within a language. But also in terms of structure constructs that permit the user to deal 

with objects in his or her environment rather than focusing on the details of database 

description. Specifically, it should be noted that the interface to a distributed DBMS does 

not need to be a programming language but can be a graphical user interface, a natural 

language interface, and even a voice system. 

 

A hierarchy of these transparencies is shown in Figure. It is not always easy to 

delineate clearly the levels of transparency, but such a figure serves an important 

instructional purpose even if it is not fully correct. To complete the picture we have 

added a “language transparency” layer, although it is not discussed in this chapter. With 

this generic layer, users have high-level access to the data (e.g., fourth-generation 

languages, graphical user interfaces, natural language access). 

 



 
 

 

How Do Existing Systems Fare 

 
Most of the commercial distributed DBMSs today have started to provided some level of 

transparency support. Typically the systems provide distribution transparency, support 

for horizontal fragmentation and some form of replication transparency. 

This level of support is quite recent. Until recently, most commercial distributed 

DBMSs did not provide a sufficient level of transparency. Some (e.g., R* [Williams et al. 

1982]) required users to embed the location names within the name of each database 

object. Furthermore, they required the user to specify the full name for access to the 

object. Obviously, one can set up aliases for these long names if the operating system 

provides such a facility. However, user-defined aliases are not real solutions to the 

problem in as much as they are attempts to avoid addressing them within the distributed 

DBMS. The system, not the user, should be responsible for assigning unique names to 

objects and for translating user-known names to these unique internal object names. 

 

Besides these semantic considerations, there is also a very pragmatic problem 

associated with embedding location names within object names. Such an approach makes 

it very difficult to move objects across machines for performance optimization or other 

purposes. Every such move will require users to change their access names for the 

affected objects, which is clearly undesirable. 

 

Other systems did not provide any support for the management of replicate data 

across multiple logical databases. Even those that did required that the user be physically 

“logged on” to one database at a given time (e.g., Oracle versions prior to V7). 

 



At this point it is important to point out that full transparency is not a universally 

accepted objective. Gray argues that full transparency makes the management of 

distributed data very difficult and claims that “applications coded with transparent access 

to geographically distributed databases have: poor manage-ability, poor modularity, and 

poor message performance”.  He proposes a remote procedure call mechanism between 

the requestor users and the server DBMSs whereby the users would direct their queries to 

a specific DBMS. It is indeed true that the management of distributed data is more 

difficult if transparent access is provided to users, and that the client/server architecture 

(which we discuss in Chapter 4) with a remote procedure call-based communication 

between the clients and the servers is the tight architectural approach. In fact, some 

commercial distributed DBMSs are organized in this fashion. However, the goal of fully 

transparent access to distributed and replicated data is an important one and it is up to the 

system vendors to resolve the system issues. 

 

 

 

 

 

2. Is there any similarities between multiprocessor  and 

distributed database system ? If yes , explain how. 
 

DISTRIBUTED DATA PROCESSING 

 
The term of distributed processing (or distributed computing) is probably the most 

abused term in computer science of the last couple of years. It has been used to refer to 

such diverse systems as multiprocessor systems, distributed data processing, and 

computer networks. This abuse has gone on to such an extent that the term distributed 

processing has sometimes been called “a concept in search of a definition and a name.” 

Here are some of the other terms that have been used synonymously with distributed 

processing: distributed function, distributed computers or computing, networks, 

multiprocessors/multicomputers, satellite processing/satellite computers, backend 

processing, dedicated/special-purpose computers, time-shared systems, and functionally 

modular systems. 

 

Obviously, some degree of distributed processing goes on in any computer system, 

even on single-processor computers. Starting with the second-generation computers, the 

central processing unit (CPU) and input/output (I/O) functions have been separated and 

overlapped. This separation and overlap can be considered as one form of distributed 

processing. However, it should be quite clear that what we would like to refer to as 

distributed processing, or distributed computing, has nothing to do with this form of 

distribution of functions in a single-processor computer system.  

 

A term that has caused so much confusion is obviously quite difficult to define 

precisely. There have been numerous attempts to define what distributed processing is, 

and almost every researcher has come up with a definition. In this book we define 



distributed processing in such a way that it leads to a definition of what a distributed 

database system is. The working definition we use for a distributed computing system 

states that it is a number of autonomous processing elements (not necessarily 

homogeneous) that are interconnected by a computer network and that cooperate in 

performing their assigned tasks. The “processing element” referred to in this definition is 

a computing device that can execute a program on its own. 

 

One fundamental question that needs to be asked is: What is being distributed? One 

of the things that might be distributed is the processing logic. In fact, the definition of a 

distributed computing system given above implicitly assumes that the processing logic or 

processing elements are distributed. Another possible distribution is according to 

function. Various functions of a computer system could be delegated to various pieces of 

hardware or software. A third possible mode of distribution is according to data. Data 

used by a number of applications may be distributed to a number of processing sites. 

Finally, control can be distributed. The control of the execution of various tasks might be 

distributed instead of being performed by one computer system. From the viewpoint of 

distributed database systems, these modes distribution are all necessary and important. In 

the following sections we talk about these in more detail. 

 

We can define a distributed database as a collection of multiple, logically interrelated 

databases distributed over a computer network. A distributed database management 

system (distributed DBMS) is then defined as the software system that permits the 

management of the DDBS and makes the distribution transparent to the users. The two 

important terms in thee definitions are “logically interrelated” and “distributed over a 

computer network.” They help eliminate certain cases that have sometimes been accepted 

to represent a DDBS. 

 

A DDBS is not a “collection of files” that can be individually stored at each node of a 

computer network. To form a DDBS, files should not only be logically related, but there 

should be structure among the files, and access should be via a common interface. We 

should note that there has been much recent activity in providing DBMS functionality 

over semi-structured data that are stored in files on the Internet (such as Web pages). In 

light of this activity, the above requirement may seem unnecessarily strict. However, 

providing “DBMS-like” access to data is different than a DDBS:  

It has sometimes been assumed that the physical distribution of data is not the most 

significant issue. The proponents of this view would therefore feel comfortable in 

labeling as a distributed database two (related) databases that that reside in the same 

computer system. However, the physical distribution of data is very important. It creates 

problems that are not encountered when the databases reside in the same computer. Note 

that physical distribution does not necessarily imply that the computer systems be 

geographically far apart; they could actually be in the same room. It simply implies that 

the communication between them is done over a network instead of through shared 

memory, with the network as the only shared resource.  

 

This brings us to another point. The definition above also rules out multiprocessor 

systems as DDBSs. A multiprocessor system is generally considered to be a system 



where two or more processors share some form of memory, either primary memory, in 

which case the multiprocessor is called shared memory (also called tightly coupled)  

 

 
 

3. do you mean by Distributed Database system ? Also explain 

how DDBMS is classified ? 
 

The term of distributed processing (or distributed computing) is probably the most 

abused term in computer science of the last couple of years. It has been used to refer to 

such diverse systems as multiprocessor systems, distributed data processing, and 

computer networks. This abuse has gone on to such an extent that the term distributed 

processing has sometimes been called “a concept in search of a definition and a name.” 

Here are some of the other terms that have been used synonymously with distributed 

processing: distributed function, distributed computers or computing, networks, 

multiprocessors/multicomputers, satellite processing/satellite computers, backend 

processing, dedicated/special-purpose computers, time-shared systems, and functionally 

modular systems. 

 

Obviously, some degree of distributed processing goes on in any computer system, 

even on single-processor computers. Starting with the second-generation computers, the 

central processing unit (CPU) and input/output (I/O) functions have been separated and 

overlapped. This separation and overlap can be considered as one form of distributed 

processing. However, it should be quite clear that what we would like to refer to as 

distributed processing, or distributed computing, has nothing to do with this form of 

distribution of functions in a single-processor computer system.  

 

A term that has caused so much confusion is obviously quite difficult to define 

precisely. There have been numerous attempts to define what distributed processing is, 

and almost every researcher has come up with a definition. In this book we define 

distributed processing in such a way that it leads to a definition of what a distributed 

database system is. The working definition we use for a distributed computing system 



states that it is a number of autonomous processing elements (not necessarily 

homogeneous) that are interconnected by a computer network and that cooperate in 

performing their assigned tasks. The “processing element” referred to in this definition is 

a computing device that can execute a program on its own. 

 

One fundamental question that needs to be asked is: What is being distributed? One 

of the things that might be distributed is the processing logic. In fact, the definition of a 

distributed computing system given above implicitly assumes that the processing logic or 

processing elements are distributed. Another possible distribution is according to 

function. Various functions of a computer system could be delegated to various pieces of 

hardware or software. A third possible mode of distribution is according to data. Data 

used by a number of applications may be distributed to a number of processing sites. 

Finally, control can be distributed. The control of the execution of various tasks might be 

distributed instead of being performed by one computer system. From the viewpoint of 

distributed database systems, these modes distribution are all necessary and important. In 

the following sections we talk about these in more detail. 

 

We can define a distributed database as a collection of multiple, logically interrelated 

databases distributed over a computer network. A distributed database management 

system (distributed DBMS) is then defined as the software system that permits the 

management of the DDBS and makes the distribution transparent to the users. The two 

important terms in thee definitions are “logically interrelated” and “distributed over a 

computer network.” They help eliminate certain cases that have sometimes been accepted 

to represent a DDBS. 

 

 

4. How could you relate the problem areas of DDBMS? 
 



 
Relationship among Problems 
 

We should mention at this point that these problems are not isolated from one another. 

The reasons for studying them in isolation are that (1) problems are difficult enough to 

study by themselves, and would probably be impossible to present all together, and that 

(2) it might be possible to characterize the effect of one problem on another one, through 

the use of parameters and constraints. In fact, each problem is affected by the solutions 

found for the others, and in turn affects the set of feasible solutions for them. In this 

section we discuss how they are related.  

 

 The relationship among the components is shown in Figure. The design of distributed 

databases affects many areas. It affects directory management, because the definition of 

fragments and their placement determine the contents of the directory (or directories) as 

well as the strategies that may be employed to manage them. The same information (i.e., 

fragment structure and placement) is used by the query processor to determine the query 

evaluation strategy. On the other hand, the access and usage patterns that are determined 

by the query processor are used as inputs to the data distribution and fragmentation 

algorithms. Similarly, directory placement and contents influence the processing of 

queries. 

 

 The replication of fragments when they are distributed affects the concurrency control 

strategies that might be employed, some concurrency control algorithms cannot be easily 

used with replicated databases. Similarly, usage and access patterns to the database will 

influence the concurrency control algorithms. If the environment is update intensive, the 

necessary precautions are quite different from those in a query-only environment. 

 



 There is a strong relationship among the concurrency control problem, the deadlock 

management problem, and reliability issues. This is to be expected, since together they 

are usually called the reliability issues. This is to be expected, since together they usually 

called the transaction management problem. The concurrency control algorithm that is 

employed will determine whether or not a separate deadlock management facility is 

required. If a locking-based algorithm is used, deadlocks will occur, whereas they will 

not if timestamping is the chosen alternative.  

 

 Reliability mechanisms are implemented on top of a concurrency control algorithm. 

Therefore, the relationship among them is self-explanatory. It should also be mentioned 

that the reliability mechanisms being considered have an effect on the choice of the 

concurrency control algorithm. Techniques to provided reliability also make use of data 

placement information since the existence of duplicate copies of the data serve as a 

safeguard to maintain reliable operation. 

 

 Two of the problems we discussed in the preceding sections—operating system issues 

and heterogeneous databases—are not illustrated in Figure.This is obviously not because 

they have no bearing on other issues; in fact, exactly the opposite is true. The type of 

operating system used and the features supported by that operating system greatly 

influence what solution strategies can be applied in any of the other problem areas. 

Similarly, the nature of all these problems change considerably when the environment is 

heterogeneous. The same issues have to be dealt with differently when the machine 

architecture, the operating systems, and the local database management software vary 

from site to site. 

 

 

Unit II 
 

1. Write an algorithm for derived horizontal fragmentation. 
Derived Horizontal Fragmentation 
 

A derived horizontal fragmentation is defined on a member relation of a link according to 

a selection operation specified on its owner. It is important to remember two points. First, 

the link between the owner and the member relations is defined as an equi-join. Second, 

an equi-join can be implemented b means of semijoins. This second point is especially 

important for our purposes, since we want to partition a member relation according to the 

fragmentation of its owner, but we also want the resulting fragment to be defined only on 

the attributes of the member relation.  

Accordingly, given a link L where owner (L) = S and member (L) = R, the derived 

horizontal fragments of R are defined as 

 

   Ri = R  Si, 1   i   w 

 

 



where w is the maximum number of fragments that will be defined on R, and                   

Si = σ Fi,(S), where Fi is the formula according to which the primary horizontal fragment 

Si is defined. 

 

Example  

 

Consider, where owner (L1) = PAY and member (L1) = EMP. Then we can group 

engineers into two groups according to their salary: those making less than or equal to 

$30,000, and those making more than $30,000. The two fragments EMP1 and EMP2 

are defined as follows: 

    

   EMP1   =   EMP  PAY1 

   EMP2   =   EMP  PAY2 

 

 where  

 

   PAY1   =   σ SAL  30000
(PAY)

 

   PAY2   =   σ SAL >30000
(PAY) 

The result of this fragmentation is depicted in Figure 5.11. 

 

To carry out a derived horizontal fragmentation, three inputs are needed: the set of 

partitions of the owner relation (e.g., PAY1 and PAY2 in Example 5.12), the member 

relation, and the set of semijoin predicates between the owner and the member (e.g., 

EMP.TITLE = PAY.TITLE in Example). The fragmentation algorithm, then is quite 

trivial, so we will not present it in any detail. 

 

There is one potential complication that deserves some attention. In a database 

schema, it is common that there are more than two links into a relation R . In this case 

there is more than one possible derived horizontal fragmentation of R. the decision as to 

which candidate fragmentation to choose is based on two criteria: 

 

1. The fragmentation with better join characteristic 

 

2. the fragmentation used in more applications. 

 

Let us discuss the second criterion first. This is quite straightforward if we take into 

consideration the frequency with which applications access some data. If possible, one 

should try to facilitate the accesses of the “heavy” users so that their total impact on 

system performance is minimized. 

 

Applying the first criterion, however, is not that straightforward. Consider, for 

example, the fragmentation we discussed in Example. The effect (and the objective) of 

this fragmentation is that the join of the EMP and PAY relations to answer the query is 

assisted (1) by performing it on smaller relations (i.e., fragments), and (2) by potentially 

performing joins in a distributed fashion. 



 

The first point is obvious. The fragments of EMP are smaller than EMP itself. 

Therefore, it will be faster to join any fragment of PAY with any fragment of EMP than 

to work with the relations themselves. The second point, however, is more important and 

is at the heart of distributed databases. If, besides executing a number of queries at 

different sites, we can execute one query in parallel, the response time or throughput of 

the system can be expected to improve. In the case of joins, this is possible under certain 

circumstances. Consider, for example, the join graph (i.e., the links) between the 

fragments of EMP and PAY derived in Example. There is only one link coming in or 

going out of a fragment. Such a join graph is called a simple graph. The advantage of a 

design where the join relationship between fragments is simple is that the member and 

owner of a link can be allocated to one site and the joins between different pairs of 

fragments can proceed independently and in parallel. 

 

Unfortunately, obtaining simple join graphs may not always be possible. In that case, 

the next desirable alternative is to have a design that results in a partitioned join graph. A 

partitioned graph consists of two or more subgraphs with no links between them. 

Fragments so obtained may not be distributed for parallel execution as easily as those 

obtained via simple join graphs, but the allocation is still possible. 

 

 

Example  

 

Let us continue with the distribution design of the database we started in Example. 

We already decided on the fragmentation of relation EMP according to the 

fragmentation of PAY. let us now consider ASG. Assume that there are the following 

two applications: 

 

1. The first application finds the names of engineers who work at certain places. 

It runs on all three sites and accesses the information about the engineers who 

work on local projects with higher probability than those of projects at other 

locations. 

 

2. At each administrative site where employee records are managed, users would 

like to access the projects that these employees work on and learn how long 

they will work on those projects. 

 

The first application results in a fragmentation of ASG according to the fragments 

PROJ1, PROJ3, PROJ4 and PROJ6 of PROJ obtained in Example. Remember that 

 

PROJ1:    σLOC = “Montreal”   BUDGET   200000
(PROJ)

 

PROJ3:    σLOC = “New York”   BUDGET   200000
(PROJ)

 

PROJ4:    σLOC = “New York”)   BUDGET > 200000
(PROJ)

 

PROJ6:    σLOC = “Paris”)  BUDGET > 200000
(PROJ)

 



 

Therefore, the derived fragmentation of ASG according to {PROJ1, PROJ2, PROJ3} is 

defined as follows: 

  

ASG1 = ASG  PROJ1 

ASG2 = ASG  PROJ3 

ASG3 = ASG  PROJ4 

ASG4 = ASG  PROJ6  

 

These fragment instances are shown in Figure. 

The second query can be specified in SQL as 

 
  SELECT RESP, DUR 

  FROM  ASG, EMP i   
  WHERE ASG.ENO = EMP i . ENO 

 

where, i = 1 or i = 2, depending on which site the query is issued at. The derived 

fragmentation of ASG according to the fragmentation of EMP is defined below and 

depicted in Figure . 

ASG1 = ASG  EMP1 

ASG2 = ASG  EMP2 

 

This example demonstrates two things: 

 

1. Derived fragmentation may follow a chain where one relation is fragmented as a 

result of another one’s design and it, in turn, causes the fragmentation of another 

relation (e.g., the chain PAY-EMP-ASG) 

 

2. Typically, there will be more than one candidate fragmentation for a relation (e.g., 

relation ASG). The final choice of the fragmentation scheme may be a decision 

problem addressed during allocation. 

 

 

Checking for Correctness 
 

Completeness. The completeness of a primary horizontal fragmentation is based on the 

selection predicates used. As long as the selection predicates are complete, the resulting 

fragmentation is guaranteed to be complete as well. Since the basis of the fragmentation 

algorithm is a set of complete and minimal predicates, Pr’, completeness is guaranteed as 

long as no mistakes are made in defining Pr’. 

 

The completeness of a derived horizontal fragmentation is somewhat more difficult to 

define. The difficulty is due to the fact that the predicate determining the fragmentation 

involves two relations. Let us first define the completeness rule formally and then look at 

an example. 

 



Let R be the member relation of a link whose owner is relation S, which is fragmented 

as Fs = {S1, S2, …, Sw}. Furthermore, let A be the join attribute between R and S. Then for 

each tuple t of R, there should be a tuple t of S such that 

 

    t [A] = t’ [A] 

 

For example, there should be no ASG tuple which has a project number that is not 

also contained in PROJ. Similarly, there should be no EMP tuples with TITLE values 

where the same TITLE value does not appear in PAY as well. This rule is known as 

referential integrity and ensures that the tuples of any fragment of the member relation 

are also in the owner relation. 

 

Reconstruction. Reconstruction of a global relation from its fragments is performed by 

the union operator in both the primary and the derived horizontal fragmentation. Thus, 

for a relation R with fragmentation 

 

   R =  Ri,   Ri   FR 

 

Disjointness. It is easier to establish Disjointness of fragmentation for primary than for 

derived horizontal fragmentation. In the former ease, disjointness is guaranteed as long as 

the minterm predicates determining the fragmentation are mutually exclusive.  

 

In derived fragmentation, however, there is a semijoin involved that adds 

considerable complexity. Disjointness can be guaranteed If the join graph is simple. If it 

is not simple, it is necessary to investigate actual tuple values. In general, we do not want 

a tuple of a member relation to join with two or more tuples of the owner relation when 

these tuples are in different fragments of the owner. This may not be very easy to 

establish, and illustrates why derived fragmentation schemes that generate a simple join 

graph are always desirable. 

 

Example 5.14 

 

In fragmenting relation PAY the minterm predicates M = {
1m ,

2m } were  

 

    
1m :     SAL   30000 

    
2m :     SAL > 30000 

 

Since 1m  and 2m  are mutually exclusive, the fragmentation of PAY is disjoint. For 

relation EMP, however, we require that  

 

1. Each engineer have a single title. 

 

2. Each title have a single salary value associated with it. 

Since these two rules follow from the semantics of the database, the fragmentation of 

EMP with respect to PAY is also disjoint. 



 

 
 

 

2. Explain the MDBS architecture with GCS and without GCS 

and explain how GCS is different in MDBS than DDBMs. 
MDBS Architecture 
 

The differences in the level of autonomy between the distributed multi-DBMSs and 

distributed DBMSs are also reflected in their architectural models. The fundamental 

difference relates to the definition of the global conceptual schema. In the case of 

logically integrated distributed DBMSs, the global conceptual schema defines the 

conceptual view of the entire database, while in the case of distributed multi-DBMSs, it 

represents only the collection of some of the local databases that each local DBMS wants 

to share. Thus the definition of a global database is different in MDBSs than in 

distributed DBMSs. In the latter, the global database is equal to the union of local 

databases, whereas in the former it is only subset of the same union. There are even 

arguments as to whether the global conceptual schema should even exist in multidatabase 

systems. This question forms the basis of our architectural discussions in this section.  

 

Module Using a Global Conceptual Schema 

 
In an MDBS, the GCS is defined by integrating either the external schemas of local 

autonomous databases or parts of their local conceptual schemas. Furthermore, users of a 

local DBMS define their own views on the local database and do not need to change their 

applications if they do not want to access data from another database. This is again an 

issue of autonomy. 

 

Designing the global conceptual schema in multidatabase systems involves the 

integration of either the local conceptual schemas or the local external schemas. A major 

difference between the design of the GCS in multi-DBMSs and in logically integrated 

distributed DBMSs is that in the former the mapping is from local conceptual schemas to 

a global schema. In the latter, however, mapping is in the reverse direction. As we 

discuss in Chapter 5, this is because the design in the former is usually a bottom-up 

process, whereas in the latter it is usually a top-down procedure. Furthermore, if 

heterogeneity exists in the multidatabase system, a canonical data model has to be found 

to define the GCS. 



 
 

 

 

 

 

Once the GCS has been designed, views over the global schema can be defined for 

users who require global access. It is not necessary for the GES and GCS to be defined 

using the same data model and language; whether they do or not determines whether the 

system is homogeneous or heterogeneous. 

 

If heterogeneity exists in the system, then two implementation alternatives exist: 

unilingual and multilingual. A unilingual multi-DBMS requires the users to utilize 

possibly different data models and languages when both a local database and the global 

database are accessed. The identifying characteristic of unilingual systems is that any 

application that accesses data from multiple databases must do so by means of an external 

view that is defined on the global conceptual schema. This means that the user of the 

global database is effectively a different user than those who access only a local database, 

utilizing a different data model and a different data language. Thus, one application may 

have a local external schema (LES) defined on the local conceptual schema as well as a 

global external schema (GES) defined on the global conceptual schema. The different 

external view definitions may require the use of different access languages. Figure 

actually depicts the datalogical model of a unilingual database system that integrates the 

local conceptual schemas (or parts of them) into a global conceptual schema. Examples 

of such an architecture are the MULTIBASE. 

  An alternative is multilingual architecture where the basic philosophy is to permit 

each user to access the global database (i.e., data from other databases) by means of an 

external schema, defined using the language of the user’s local DMBS. The GCS 



definition is quite similar in the multilingual architecture and the unilingual approach, the 

major difference being the definition of the external schemas’ which are described in the 

language of external schemas of the local database. Assuming that the definition is purely 

local, a query issued according to a particular schema is handled exactly as query in the 

centralized DBMSs. Queries, against the global database are made using the language of 

the local DMBS, but they generally require some processing to be mapped to the global 

conceptual schema. 

 

Models Without a Global Conceptual Schema 
 

The existence of a global conceptual schema in a multidatabase system is a controversial 

issue. There are researchers who even define a multidatabase management system as one 

that manages “several databases without a global schema” It is argued that the absence of 

a GCS is a significant advantage of multidatabase systems over distributed database 

systems. One prototype system that has used this architectural model is the MRDSM 

project The architecture depicted in Figure 4.9, identifies two layers: the local system 

layer and the multidatabase layer on top of it. The local system layer consists of a number 

of DBMSs, which present to the multidatabase layer the part of their local database they 

are willing to share with users of other databases. This shared data is presented either as 

the actual local conceptual schema or as a local external schema definition. If 

heterogeneity is involved, each of these schemas, LCSi, may use a different data model. 

 
 

Above this layer, external views are constructed where each view may be defined on 

one local conceptual schema or on multiple conceptual schemas. Thus the responsibility 

of providing access to multiple (and may be heterogeneous) databases is delegated to the 

mapping between the external schemas and the local conceptual schemas. This is 

fundamentally different from architectural models that use a global conceptual schema, 

where this responsibility is taken over by the mapping between the global conceptual 



schema and the local ones. This shift in responsibility has a practical consequence. 

Access to multiple databases is provided by means of a powerful language in which user 

applications are written. 

 
 

Federated database architectures, which we discussed briefly, do not use a global 

conceptual schema either. In the specific system described in, each local DBMS defines 

an export schema, which describes the data it is willing to share with others. In the 

terminology that we have been using, the global database is the union of all the export 

schemas. Each, application that accesses, the global database does so by the definition of 

an import schema, which is simply a global external view. 

 

The component-based architectural model of a multi-DBMS is significantly different 

from a distributed DBMS. The fundamental difference is the existence of full-fledged 

DBMSs, each of which manages a different database. The MDBS provides a layer of 

software that runs on top of these individual DBMSs and provides users with the facilities 

of accessing various databases .Depending on the existence (or lack of it), the contents of 

this layer of software would change significantly. Note that Figure represents a 

nondistributed multi-DBMS. If the system is distributed, we would need to replicate the 

multidatabase layer to each site where there is a local DBMS that participates in the 

system. Also note that as far as the individual DBMSs are concerned, the MDBS layer is 

simply another application that submits requests and receives answers. 

 

The domain of federated database and multidatabase systems is complicated by the 

proliferation of terminology and different architectural models. We bring some order to 

the field in this section, but the architectural approaches that we summarize are not 

unique.  

 

 



3. Explain structural and functional implementation of “ANSI | 

x3| SPARC” DBMS frame work. 

 
In late 1972, the Computer and Information Processing Committee (X3) of the 

American National Standards Institute (ANSI) established a Study Group on Database 

Management Systems under the auspices of its Standards Planning and Requirements 

Committee (SPARC). The mission of the study group was to study the feasibility of 

setting up standards in this area, as well as determining which aspects should be 

standardized if it was feasible. The study group issued its interim report in 1975 [SPARC, 

1975], and its final report in 1977. The architectural framework proposed in these reports 

came to be known as the “ANSI/SPARC architecture,” its full title being 

“ANSi/X3/SPARC DBMS Framework.” The study group proposed that the interfaces be 

standardized, and defined an architectural framework that contained 43 interfaces, 14 of 

which would deal with the physical storage subsystem of the computer and therefore not 

be considered essential parts of the DBMS architecture. 

 

With respect to our earlier discussion on alternative approaches to standardization, the 

ANSI/SPARC architecture is claimed to be based on the data organization. It recognizes 

three views of data: the external view, which is that of the user, who might be a 

programmer; the internal view, that of the system or machine; and the conceptual view, 

that of the enterprise. For each of these views, an appropriate schema definition is 

required. Figure depicts the ANSI/SPARC architecture from the data organization 

perspective. 

 

At the lowest level of the architecture is the internal view, which deals with the 

physical definition and organization of data. The location of data on different storage 

devices and the access mechanisms used to reach and manipulate data are the issues dealt 

with at this level. At the other extreme is the external view, which is concerned with how 

users view the database. An individual user’s view represents the portion of the database 

that will be accessed by that user as well as the relationships that the user would like to 

see among the data. A view can be shared among a number of users, with the collection 

of user views making up the external schema. In between these two ends is the 

conceptual schema, which is an abstract definition of the database. It is the “real world” 

view of the enterprise being modeled in the database . As such, it is supposed to represent 

the data and the relationships among data without considering the requirements of 

individual applications or the restrictions of the physical storage media. In reality, 

however, it is not possible to ignore these requirements completely, due to performance 

reasons. The transformation between these three levels is accomplished by mappings that 

specify how a definition at one level can be obtained from a definition at another level. 

 



 
 

 

 

 

Example 

 

Let us consider the engineering database example we have been using and indicate 

how it can be described using a fictitious DBMS that conforms to the ANSI/SPARC 

architecture. Remember that we have four relations: EMP, PROJ, ASG, and PAY. The 

conceptual schema should describe each relation with respect to its attributes and its key. 

The description might look like the following.1 

 

 

 
RELATION EMP [ 

 KEY = {END} 

 ATTRIBUTES = { 

 END    : CHARACTER (9) 

 ENAME   : CHAREACTER (15) 

 TITLE   : CHAREACTER (10) 

 } ] 

RELATION PAY [ 

 KEY = {TITLE} 

 ATTRIBUTES = { 

  TITLE  : CHAREACTER (10) 



  SAL  : NUMERIC (6) 

  }   ] 

 

 
RELATION PROJ [ 

 KEY = {PNO} 

 ATTRIBUTES = { 

 PNO    : CHARACTER (8) 

 PNAME   : CHAREACTER (20) 

 BUDGET   : CHAREACTER (7) 

 } ] 

RELATION ASG [ 

 KEY = {END, PNO} 

 ATTRIBUTES = { 

  ENO  : CHAREACTER (9) 

  PNO  : NUMERIC (7) 

  RESP : CHAREACTER (10) 

  DUR  : NUMERIC (3) 

  }   ] 

 

At the internal level, the storage details of these relations are described. Let us assume 

that the EMP relation is stored in an indexed file, where the index is defined on the key 

attribute (i.e., the ENO) called EMINX.2  Let us also assume that we associate a 

HEADER field which might, contain flags (delete, update, etc.) and other control 

information. Then the internal schema definition of the relation may be as follows: 

 
INTERNAL_REL EMPL [ 

 INDEX ON E# CALL EMINX 

 FIELD = { 

  HEADER : BYTE (1) 

  E#  : BYTE (9) 

  E:NAME : BYTE (15) 

  TIT  : BYTE (10) 

  } 

 ] 

 

We have used similar syntaxes for both the conceptual and the internal descriptions. This 

is done for convenience only and does not imply the true nature of languages for these 

functions. 

 

Finally, let us consider the external views, which we will describe using SQL notation. 

We consider two applications: one that calculates the payroll payments for engineers, and 

a second that produces a report on the budget of each project. 3 Notice that for the first 

application, we need attributes from both the EMP and the PAY relations. In other words, 

the view consists of a join, which can be defined as 

 
CREATE  VIEW PAYROLL (ENO, ENAME, SAL) 



AS   SELECT EMP.END, 

    EMP.ENAME, 

    PAY.SAL 

   FROM EMP, PAY 

   WHERE EMP.TITLE = PAY.TITLE 

 

The second application is simply a projection of the PROJ relation, which can be 

specified as 

 
CREATE  VIEW BUDGET (PNAME, BUD) 

AS   SELECT PNAME, BUDGET 

   FROM PROJ 

 

 This investigation of the ANSI/SPARC architecture with respect to its functions 

results in a considerably more complicated view, as depicted in Figure. 4 The square 

boxes represent processing functions, whereas the hexagons are administrative roles. The 

arrows indicate data, command, program, and description flow, whereas the “I”-shaped 

bars on them represent interfaces. 

 

The major component that permits mapping between different data organizational views 

is the data dictionary/directory (depicted as a triangle), which is a meta-database.  

 

 

It should at least contain schema and mapping definitions. It may also contain usage 

statistics, access control information, and the like. It is clearly seen that the data 

dictionary/directory serves as the central component in both processing different schemas 

and in providing mappings among them.  

 

 We also see in Figure a number of administrator roles, which might help to define a 

functional interpretation of the ANSI/SPARC architecture. The three roles are the 

database administrator, the enterprise administrator, and the application administrator. 

The database administrator is responsible for defining the internal schema definition. The 

enterprise administrator's role is the focal point of the use of information within an 

enterprises. Finally, the application administrator is responsible for preparing the external 

schema for applications. Note that these are roles that might be fulfilled by one particular 

person or by several people. Hopefully, the system will provide sufficient support for 

these roles. 

 

In addition to these three classes of administrative user defined by the roles, there are 

two more, the application programmer and the system programmer. Two more user 

classes can be defined, namely casual users and novice end users. Casual users 

occasionally access the database to retrieve and possibly to update information. Such 

users are aided by the definition of external schemas and by an easy-to-use query 

language. Novice users typically have no knowledge of databases and access information 

by means of predefined menus and transactions (e.g., banking machines). 

 

 



 

 

4. Define and explain the following terms- 

 i.  Midterm selectivity and access performance. 

 ii. Correctness rule of fragmentation 

 iii. Degree of fragmentation 

iv. Hybrid fragmentation. 

 

i.  Midterm selectivity and access performance. 
 Minterm selectivity: number of tuples of the relation that would be accessed by a 

user query specified according to a given minterm predicate. For example, the 

selectivity of m1 of example 5.6 is 0 since there are no tuples in PAY that satisfy 

the minterm predicate. The selectivity of m2, on the other hand, is 1. We denote 

the selectivity of a minterm mi as sel (mi). 

 

Access frequency: frequency with which user applications access data. 

If Q = {q1, q2, …, qq} is a set of user queries, acc(qi) indicates the access 

frequency of query qi in a given period. 

 

Note that minterm access frequencies can be determined from the query frequencies. 

We refer t the access frequency of a minterm mi as acc(mi). 

 

 

ii. Correctness Rules of Fragmentation 
 

When we looked at normalization in Chapter2, we mentioned a number of rules to ensure 

the consistency of the database. It is important to note the similarity between the 

fragmentation of data for distribution (specifically, vertical fragmentation) and the 

normalization of relations. Thus fragmentation rules similar to the normalization 

principles can be defined. 

 

We will enforce the following three rules during fragmentation, which, together, 

ensure that the database does not undergo semantic change during fragmentation. 

 

1. Completeness. If a relation instance R is decomposed into fragments R1, R2, …, Rn 

each data item that can be found in R can also be found in one or more of Ri’s. 

This property, which is identical to the lossless decomposition property of 

normalization, is also important in fragmentation since it ensures that the data in a 

global relation is mapped into fragments without any loss. Note that in the case of 

horizontal fragmentation, the “item” typically refers to a tuple, while in the case 

of vertical fragmentation, it refers to an attribute. 

 



2. Reconstruction. If a relation R is decomposed into fragments R1, R2, …, Rn, it 

should be possible to define a relational operator   such that  

 

,iRR     Ri FR   

  

 The operator   will be different for the different forms of fragmentation; it is 

important, however, that it can be identified. The reconstructability of the relation 

from its fragments ensures that constraints defined on the data in the form of 

dependencies are preserved. 

 

Disjointness. If a relation R is horizontally decomposed into fragments R1, R2, …, Rn 

and data item d1 is in Rj, it is not in any other fragment Rk (k   j). This criterion 

ensures that the horizontal fragments are disjoint. If relation R is vertically 

decomposed, its primary key attributes are typically repeated in all its fragments. 

Therefore. In case of vertical partitioning, Disjointness is denned only on the 

nonprimary key attributes of a relation 

 

iii. Degree of Fragmentation 
 

The extent to which the database should be fragmented is an important decision that 

affects the performance of query execution. In fact, concerning the reasons for 

fragmentation constitute a subset of the answers to the question we are addressing here. 

The degree of fragmentation goes from one extreme, that is, not to fragment at all, to the 

other extreme, to fragment to the level of individual tuples (in the case of horizontal 

fragmentation) or to the level of individual attributes (in the case of vertical 

fragmentation). 

 

We have already addressed the adverse effects of very large and very small units of 

fragmentation. What we need, then, is to find a suitable level of fragmentation which is a 

compromise between the two extremes. Such a level can only be defined with respect to 

the applications that will run on the database. The issue is, how? In general, the 

applications need to be characterized with respect to a number of parameters. According 

to the values of these parameters, individual fragments can be identified.  

 

iv.. Hybrid Fragmentation 
 

In most cases a simple horizontal or vertical fragmentation of a database schema will not 

be sufficient to satisfy the requirements of user applications, in this case a vertical 

fragmentation may be followed by a horizontal one, or vice versa, producing a tree-

structured partitioning . Since the two types of partitioning strategies are applied one after 

the other, this alternative is called hybrid fragmentation. It has also been named mixed 

fragmentation or nested fragmentation. 



 
 

 

 

A good example for the necessity of hybrid fragmentation is relation PROJ, which we 

have been working with. we partitioned the same relation vertically into two. What we 

have, therefore, is a set of horizontal fragments, each of which is further partitioned into 

two vertical fragments.  

 

The number of levels of nesting can be large, but it is certainly finite. In the case of 

horizontal fragmentation, one has to stop when each fragment consists of only one tuple, 

whereas the termination point for vertical fragmentation is one attribute per fragment. 

These limits are quite academic, however, since the levels of nesting in most practical 

applications do not exceed 2. This is due to the fact that normalized global relations 

already have small degrees and one cannot perform too many vertical fragmentations 

before the cost of joins becomes very high. 

 

We will not discuss in detail the correctness rules and conditions for hybrid 

fragmentation, since they follow naturally from those for vertical and horizontal 

fragmentations. For example, to reconstruct the original global relation in case of hybrid 

fragmentation, one starts at the leaves of the partitioning tree and moves upward by 

performing joins and unions. The fragmentation is complete if the intermediate and leaf 

fragments are complete. Similarly, disjointness is guaranteed if intermediate and leaf 

fragments are disjoint. 

 

 

 

 
 

 



Unit III 

 

1. Explain 4 layers that are involved to map distributed query 

into optimized Sequence of local operations? 
 

LAYERS OF QUERY PROCESSING 
 

The problem of query processing can itself be decomposed into several subproblems, 

corresponding to various layers. In Figure a generic layering scheme for query processing 

is shown where each layer solves a well defined subproblem. To simplify the discussion, 

let us assume a static and semicentralized query processor that does not exploit replicated 

fragments. The input is a query on distributed data expressed in relational calculus. This 

distributed query is posed on global (distributed) relations, meaning that data distribution 

is hidden. Four main layers are involved to map the distributed query into an optimized 

sequence of local operations, each acting on a local database. These layers perform the 

functions of query optimization, data localization, global query optimization, and local 

query optimization. Query decomposition and data localization correspond to query 

rewriting. The first three layers are performed by a central site and use global 

information; the fourth is done by the local sites.  

 

 
 

 



i. Query Decomposition 
 

The first layer decomposes the distributed calculus query into an algebraic query on 

global relations. The information needed for this transformation is fund in the global 

conceptual schema describing the global relations. However, the information about data 

distribution is not used here but in the next layer. thus the techniques used by this layer 

are those of a centralized DBMS. 

 

Query decomposition can be viewed as four successive steps. First, the calculus query 

is rewritten in a normalized form that is suitable for subsequent manipulation. 

Normalization of a query generally involves the manipulation of the query quantifiers and 

of the query qualification by applying logical operator priority. 

 

Second, the normalized query is analyzed semantically so that incorrect queries are 

detected and rejected as early as possible. Techniques to detect incorrect queries exist 

only for a subset of relational calculus. Typically, they use some sort of graph that 

captures the semantics of the query. 

 

Third, the correct query (still expressed in relational calculus) is simplified. One way 

to simplify a query is to eliminate redundant predicates. Note that redundant queries are 

likely to arise when a query is the result of system transformations applied to the user 

query.  

Fourth, the calculus query is restructured as an algebraic query. Several algebraic 

queries can be derived from the same calculus query, and that some algebraic queries are 

“better” than others. The quality of an algebraic query is defined in terms of expected 

performance. The traditional way to do this transformation toward a “better” algebraic 

specification is to start with an initial algebraic query and transform it in order to find a 

“good” one. The initial algebraic query is derived immediately from the calculus query 

by translating the predicates and the target statement into relational operations as they 

appear in the query. This directly translated algebra query is then restructured through 

transformation rules. The algebraic query generated by this layer is good in the sense that 

the worse executions are avoided. For instance, a relation will be accessed only once, 

even if there are several select predicates. However, this query is generally far from 

providing an optimal execution, since information about data distribution and local 

fragments is not used at this layer. 

 

ii. Data Localization 
 

The input to the second layer is an algebraic query on distributed relations. The main role 

of the second layer is to localize the query’s data using data distribution information. This 

layer determines which fragments are involved in the query and transforms the 

distributed query into a fragment query. Fragmentation is defined through fragmentation 

rules which can be expressed as relational operations. A distributed relation can be 

reconstructed by applying the fragmentation rules, and then deriving a program, called a 

localization program, of relational algebra operations which then acts on fragments. 

Generating a fragment query is done in two steps. First, the distributed query is mapped 



into a fragment query by substituting each distributed relation by its reconstruction 

program (also called materialization program), Second, the fragment query is simplified 

and restructured to produce another “good” query. Simplification and restructuring may 

be done according to the same rules used in the decomposition layer. As in the 

decomposition layer, the final fragment query is generally far from optimal because 

information regarding fragments is not utilized. 

 

iii. Global Query Optimization 
 

The input to the third layer is a fragment query, that is, an algebraic query on fragments. 

The goal of query optimization is to find an execution strategy for the query which is 

close to optimal. Remember that finding the optimal solution is computationally 

intractable. An execution strategy for a distributed query can be described with relational 

algebra operations and communication primitives (send/receive operations) for 

transferring data between sites. The previous layers have already optimized the query, for 

example, by eliminating redundant expressions. However, this optimization is 

independent of fragment characteristics such as cardinalities. In addition, communication 

operations are not yet specified by permuting the ordering of operations within one 

fragment query, many equivalent queries may be found. 

 

Query optimization consists of finding the “best” ordering of operations in the fragment 

query, including communication operations which minimize a cost function. The cost 

function, often defined in terms of time units, refers to computing resources such as disk 

space, disk I/Os, buffer space, CPU cost, communication cost, and so on. Generally, it is 

a weighted combination of I/O, CPU, and communication costs. Nevertheless, a typical 

simplification made by distributed DBMSs, as we mentioned before, is to consider 

communication cost as the most significant factor. This is valid for wide area networks, 

where the limited bandwidth makes communication much more costly than local 

processing. To select the ordering of operations it is necessary to predict execution costs 

of alternative candidate orderings. Determining execution costs before query execution 

(i.e., static optimization) is based on fragment statistics and the formulas for estimating 

the cardinalities of results of relational operations. Thus the optimization decisions 

depend on the available statistics on fragments. 

 

An important aspect of query optimization is join ordering, since permutations of the 

joins within the query may lead to improvements of orders of magnitude. 

 

One basic technique for optimizing a sequence of distributed join operations is 

through the semijoin operator. The main value of the semijoin in a distributed system is 

to reduce the size of the join operands and then the communication cost. However, more 

recent techniques, which consider local processing costs as well as communication costs, 

do not use semijoins because they might increase local processing costs. The output of 

the query optimization layer is an optimized algebraic query with communication 

operations included on fragments. 

 

iv. Local Query Optimization 



 

The last layer is performed by all the sites having fragments involved in the query. Each 

subquery executing at one site, called a local query, is then optimized using the local 

schema of the site. At this time, the algorithms to perform the relational operations may 

be chosen. Local optimization uses the algorithms of centralized systems. 

 

2. Explain query decomposition steps in details. 

 
v. Query Decomposition 

 

The first layer decomposes the distributed calculus query into an algebraic query on 

global relations. The information needed for this transformation is fund in the global 

conceptual schema describing the global relations. However, the information about data 

distribution is not used here but in the next layer. thus the techniques used by this layer 

are those of a centralized DBMS. 

 

Query decomposition can be viewed as four successive steps. First, the calculus query 

is rewritten in a normalized form that is suitable for subsequent manipulation. 

Normalization of a query generally involves the manipulation of the query quantifiers and 

of the query qualification by applying logical operator priority. 

 

Second, the normalized query is analyzed semantically so that incorrect queries are 

detected and rejected as early as possible. Techniques to detect incorrect queries exist 

only for a subset of relational calculus. Typically, they use some sort of graph that 

captures the semantics of the query. 

 

Third, the correct query (still expressed in relational calculus) is simplified. One way 

to simplify a query is to eliminate redundant predicates. Note that redundant queries are 

likely to arise when a query is the result of system transformations applied to the user 

query. As seen in Chapter 6, such transformations are used for performing semantic data 

control (views, protection, and semantic integrity control). 

 

Fourth, the calculus query is restructured as an algebraic query. several algebraic 

queries can be derived from the same calculus query, and that some algebraic queries are 

“better” than others. The quality of an algebraic query is defined in terms of expected 

performance. The traditional way to do this transformation toward a “better” algebraic 

specification is to start with an initial algebraic query and transform it in order to find a 

“good” one. The initial algebraic query is derived immediately from the calculus query 

by translating the predicates and the target statement into relational operations as they 

appear in the query. This directly translated algebra query is then restructured through 

transformation rules. The algebraic query generated by this layer is good in the sense that 

the worse executions are avoided. For instance, a relation will be accessed only once, 

even if there are several select predicates. However, this query is generally far from 

providing an optimal execution, since information about data distribution and local 

fragments is not used at this layer. 



 

3. What is the Complexity of Relational Algebra Operation? 

 
COMPLEXITY OF RELATIONAL ALGEBRA OPERATIONS 
 

In this chapter we consider relational algebra as a basis to express the output of query 

processing. Therefore, the complexity of relational algebra operations, which directly 

affects their execution time, dictates some principles useful to a query processor. These 

principles can help in choosing the final execution strategy. 

 

The simplest way of defining complexity is in terms of relation cardinalities 

independent of physical implementation details such as fragmentation and storage 

structures. complexity of unary and binary operations in the order of increasing 

complexity, and thus of increasing execution time. Complexity is O(n) for unary 

operations, where n denotes the relation cardinality, if the resulting tuples may be 

obtained independently of each other. Complexity is O(n * logn) for binary operation if 

each tuple of one relation must be compared with each tuple of the other on the basis of 

the equality of selected attributes. This complexity assumes that tuples of each relation 

must be sorted on the comparison attributes. Projects with duplicate elimination and 

group operations require O(n * logn) complexity. Finally, complexity is O(n2) for the 

Cartesian product of two relations because each tuple of one relation must be combined 

with each tuple of the other.  

 

This simple look at operation complexity suggests two principles. First, because 

complexity is relative to relation cardinalities, the most selective operations that reduce 

cardinalities (e.g., selection) should be performed first. Second, operations should be 

ordered by increasing complexity so that Cartesian products can be avoided or delayed. 

 

 

4. What are the characteristic that are applicable only for 

distributed Query processor? 

 

1. CHARACTERIZATION OF QUERY PROCESSORS 
 

It is quite difficult to evaluate and compare query processors in the context of both 

centralized systems  and distributed systems because they may differ in many aspects. In 

what follows, we list important characteristics of query processors that can be used as a 

basis for comparison. The first four characteristics hold for both centralized and 

distributed query processors, while the next four characteristics are particular to 

distributed query processors.  

2. Languages 
 



Initially, most work on query processing was done in the context of relational DBMSs 

because their high-level languages give the system many opportunities for optimization. 

The input language to the query processor can be based on relational calculus or 

relational algebra. With object DBMSs, the language is based on object calculus which is 

merely an extension of relational calculus. Thus, decomposition in object algebra is also 

needed. 

 

The former requires an additional phase to decompose a query expressed in relational 

calculus into relational algebra. In a distributed context, the output language is generally 

some internal form of relational algebra augmented with communication primitives. The 

operations of the output language are implemented directly in the system. Query 

processing must perform efficient mapping form the input language to the output 

language. 

 

3. Types of Optimization 
 

Conceptually, query optimization aims at choosing the best point in the solution space of 

all possible execution strategies. An immediate method for query optimization is to 

search the solution space, exhaustively predict the cost of each strategy, and select the 

strategy with minimum cost. Although this method is effective in selecting the best 

strategy, it may incur a significant processing cost for the optimization itself. The 

problem is that the solution space can be large; that is, there may be many equivalent 

strategies, even with a small number of relations. The problem becomes worse as the 

number of relations or fragments increases Having high optimization cost is not 

necessarily bad, particularly if query optimization is done once for many subsequent 

executions of the query. Therefore, an “exhaustive” search approach is often used 

whereby (almost) all possible execution strategies are considered. 

 

To avoid the high cost of exhaustive search, randomized strategies, such as Iterative 

Improvement have been proposed. They try to find a very good solution, not necessarily 

the best one, but avoid the high cost of optimization, in terms of memory and time 

consumption.  

 

Another popular way of reducing the cost of exhaustive search is the use of heuristics, 

whose effect is to restrict the solution space so that only a few strategies are considered. 

In both centralized and distributed systems, a common heuristic is to minimize the size of 

intermediate relations. This can be done by performing unary operations first, and 

ordering the binary operations by the increasing sizes of their intermediate relations. An 

important heuristic in distributed systems is to replace join operations by combinations of 

semijoins to minimize data communication. 

 

4. Optimization Timing 
 

A query may be optimized at different times relative to the actual time of query 

execution. Optimization can be done statically before executing the query r dynamically 

as the query is executed. Static query optimization is done at query compilation time. 



Thus the cost of optimization may be amortized over multiple query executions. 

Therefore, this timing is appropriate for use with the exhaustive search method. Since the 

sizes of the intermediate relations of a strategy are not known until run time, they must be 

estimated using database statistics. Errors in these estimates can lead to the choice of 

suboptimal strategies. 

 

Dynamic query optimization proceeds at query execution time. At any point of 

execution, the choice of the best next operation can be based on accurate knowledge of 

the results of the operations executed previously. Therefore, database statistics are not 

needed to estimate the size of intermediate results. However, they may still be useful in 

choosing the first operations. The main advantage over static query optimization is that 

the actual sizes of intermediate relations are available to the query processor, thereby 

minimizing the probability of a bad choice. The main shortcoming is that query 

optimization, an expensive task, must be repeated for each execution of the query. 

Therefore, this approach is best for ad-hoc queries. 

 

Hybrid query optimization attempts to provide the advantages of static query 

optimization while avoiding the issues generated by inaccurate estimates. The approach is 

basically static, but dynamic query optimization may take place at run time when a high 

difference between predicted sizes and actual size of intermediate relations is detected. 

 

5. Statistics 
 

The effectiveness of query optimization relies on statistics on the database. Dynamic 

query optimization requires statistics in order to choose which operations should be done 

first. Static query optimization is even more demanding since the size of intermediate 

relations must also be estimated based on statistical information. In a distributed 

database, statistics for query optimization typically bear on fragments, and include 

fragment cardinality and size as well as the size and number of distinct values of each 

attribute. To minimize the probability of error, more detailed statistics such as histograms 

of attribute values are sometimes used at the expense of higher management cost. The 

accuracy of statistics is achieved by periodic updating. With static optimization, 

significant changes in statistics used to optimize a query might result in query 

reoptimizaion. 

 

6. Decision Sites 
 

When static optimization is used, either a single site or several sites may participate in the 

selection of the strategy to be applied for answering the query. Most systems use the 

centralized decision approach, in which a single site generates the strategy. However, the 

decision process could be distributed among various sites participating in the elaboration 

of the best strategy. The centralized approach is simpler but requires knowledge of the 

entire distributed database, while the distributed approach requires only local 

information. Hybrid approaches where one site makes the major decisions and other sites 

can make local decisions are also frequent.  

 



7.  Exploitation of the Network Topology 
 

The network topology is generally exploited by the distributed query processor. With 

wide area networks, the cost function to be minimized can be restricted to the data 

communication cost, which is considered to be the dominant factor. This assumption 

greatly simplifies distributed query optimization, which can be divided into two separate 

problems: selection of the global execution strategy, based on intersite communication, 

and selection of each local execution strategy, based on a centralized query processing 

algorithm. 

 

With local area networks, communication costs are comparable to I/O costs. 

Therefore, it is reasonable for the distributed query processor to increase parallel 

execution at the expense of communication cost. The broadcasting capability of some 

local area networks can be exploited successfully to optimize the processing of join 

operations .Other algorithms specialized to take advantage of the network topology are 

presented in for star networks and in for satellite networks. 

 

In a client-server environment, the power of the client workstation can be exploited to 

perform database operations using data shipping. The optimization problem becomes to 

decide which part of the query should be performed on the client and which part on the 

server using query shipping. 

 

8. Exploitation of Replicated Fragments 
 

Distributed queries expressed on global relations are mapped into queries on physical 

fragments of relations by translating relations into fragments. We call this process 

localization because its main function is to localize the data involved in the query. For 

reliability purposes it is useful to have fragments replicated at different sites. Most 

optimization algorithms consider the localization process independently of optimization. 

However, some algorithms exploit the existence of replicated fragments at run time in 

order to minimize communication times. The Optimization algorithm is then more 

complex because there are a larger number of possible strategies. 

 

9. Use of Semijoins 
 

The semijoin operation has the important property of reducing the size of the operand 

relation. When the main cost component considered by the query processor is 

communication, a semijoin is particularly useful for improving the processing of 

distributed join operations as it reduces the size of data exchanged between sites. 

However, using semijoins may result in an increase in the number of messages and in the 

local processing time. The early distributed DBMSs, such as SDD-, which wee designed 

for slow wide area networks, make extensive use of semijoins. Some later systems, such 

as R* ,assume faster networks and do not employ semijoins. Rather, they perform 

semijoins are still beneficial in the context of fast networks when they induce a 

algorithms aim at selecting an optimal combination of joins and semijoins. 

 



Unit IV 

 

1. Explain traction management in details. 

 
The fundamental point here is that there is no notion of “consistent execution” or 

“reliable computation” associated with the concept of a query. The concept of a 

transaction is used within the database domain as a basic unit of consistent and reliable 

computing. Thus queries are executed as transactions once their execution strategies are 

determined and they are translated into primitive database operations.  

 

In the discussion above, we used the terms consistent and reliable quite informally. 

Due to their importance in our discussion, we need to define them more precisely. We 

should first point out that we differentiate between database consistency and transaction 

consistency. 

 

A database is in a consistent state if it obeys all of the consistency (integrity) 

constraints defined over it State changes occur due to modifications, insertions, and 

deletions (together called updates). Of course, we want to ensure that the database never 

enters an inconsistent state. Note that the database can be (and usually is) temporarily 

inconsistent during the execution of a transaction. The important point is that the database 

should be consistent when the transaction terminates  

 
 

 

 



Transaction consistency, on the other hand, refers to the actions of concurrent 

transactions. We would like the database to remain in a consistent state even i9f there are 

a number of user requests that are concurrently accessing (reading or updating) the 

database. A complication arises when replicated databases are considered. A replicated 

database is in a mutually consistent state if all the copies of every data item in it have 

identical values. This is referred to as one-copy equivalence since all replica copies are 

forced to assume the same state at the end of a transaction’s execution. There are more 

relaxed notions of replica consistency that allow replica values to diverge. These will be 

discussed later in the text. 

 

Reliability refers to both the resiliency of a system to various types of failures and its 

capability to recover from them. A resilient system is tolerant of system failures and can 

continue to provide services even when failures occur. A recoverable DBMS is one that 

can get to a consistent state (by moving back to a previous consistent state or forward to a 

new consistent state) following various types of failures. 

 

Transaction management deals with the problems of always keeping the database in a 

consistent state even when concurrent accesses and failures occur. In the upcoming two 

chapters, we investigate the issues related to managing transactions. The purpose of the 

current chapter is to define the fundamental terms and to provide the framework within 

which these issues can be discussed. It also serves as a concise introduction to the 

problem and the related issues. We will therefore discuss the concepts at a high level of 

abstraction and will not present any management techniques. 

 

DEFINITION OF A TRANSACTION 
 

The transaction concept has its roots in contract law. states, “In making a contract, two or 

more parties negotiate for a while and then make a deal. The deal is made binding by the 

joint signature of a document or by some other act (as simple as a handshake or a nod). If 

the parties are rather suspicious of one another or just want to be safe, they appoint an 

intermediary (usually called an escrow officer) to coordinate the commitment of the 

transaction. “The nice aspect of this historical perspective is that the description above 

does indeed encompass some of the fundamental properties of a transaction (atomicity 

and durability) as the term is used in database systems. It also serves to indicate the 

differences between a transaction and a query. 

 

As indicated before, a transaction is a unit of consistent and reliable computation. 

Thus, intuitively, a transaction takes a database, performs an action on it, and generates a 

new version of the database, causing a state transition. This is similar to what a query 

does, except that if the database was consistent before the execution of the transaction, 

we can now guarantee that it will be consistent at the end of its execution regardless of 

the fact that (1) the transaction may have been executed concurrently with others, and (2) 

failures may have occurred during its execution. 

 

In general, a transaction is considered to be made up of a sequence of read and write 

operations on the database, together with computation steps. In that sense, a transaction 



may be thought of as a program with embedded database access queries. Another 

definition of a transaction is that it is a single execution of a program. A single query can 

also be thought of as a program that can be posed as a transaction. 

 

 

2. Explain how to formalize a transaction with example. 

 
Formalization of the Transaction Concept 
 

By now, the meaning of a transaction should be intuitively clear. To reason about 

transactions and about the correctness of the management algorithms, it is necessary to 

define the concept formally. We denote by Oij(x) some operation Oj of transaction Ti that 

operates on a database entity x. following the conventions adopted in the preceding 

section, Oij  {read, write}. Operations are assumed to be atomic (i.e., OSi =  j Oij). We 

denote by Ni the termination condition for Ti, where Ni{abort, commit}.2 

 

With this terminology we can define a transaction Ti as a partial ordering over its 

operations and the termination condition. A partial order P = { ,  }defines an ordering 

among the elements of   (called the domain) according to an irreflexive and transitive 

binary relation   defined over  . in our case   consists of the operations and termination 

condition of a transaction, whereas   indicates the execution order of these operations 

(which we will read as “precedes in execution order”). Formally, then, a transaction Ti is 

a partial order Ti = { i,  j }, where  

 

 1.    i = OSi   {Ni}. 

 2.   For an two operations Oij, Oik,   OSi, if Oij = {R(x) or W(x)} and Ojk = W(x)  

      for any data item x, then either Oij  i Oik or Oik   Oij. 

3.   Oij   OSi, Oij  i Ni. 

 

The first condition formally defines the domain as the set of read and write operations 

that make up the transaction, plus the termination condition, which may be either commit 

or abort. The second condition specifies the ordering relation between the conflicting 

read and write operations of the transaction, while the final condition indicates that the 

termination condition always follows all other operations. 

 

There are two important points about this definition. First, the ordering relation  is 

given and the definition does not attempt to construct it. The ordering relation is actually 

application dependent. Second, condition two indicates that the ordering between 

conflicting operations has to exist within . Two operations, Oi(x) and Oj(x), are said to 

be in conflict if Oi = Write or Oj = Write (i.e., at least one of them is a Write and they 

access the same data item). 

 

Example  
 

Consider a simple transaction T that consists of the following steps: 



 

 Read(x) 

 Read(y) 

 x← x + y 

 Write(x) 

 Commit  

 

The specification of this transaction according to the formal notation that we have 

introduced is as follows: 

 

   = {R(x), R(y), W(x), C} 

  = {(R(x), W(x)), R(y), W(x), W(x), (CT), (R(x), C), (R(y)tC)} 

 

Where (Oi, Oj) as an element of the  relation indicates that Oi  Oj. 

 

Notice that ordering relation specifies the relative ordering of all operations with respect 

to the termination condition. This is due to the third condition of ransaction definition. 

Also note that we do not specify the ordering between every pair of operations. That is 

why it is a partial order. 

 

3. Explain the following terms- 

 i. cascading aborts. 

 ii. Degree of consistency 

 iii. Transaction recovery 

 iv. Types of workflows. 

 

i. cascading aborts  
obviously, the fact that if no free seats are available, the transaction is aborted.1 The 

second is the ordering of the output to the user with respect to the abort and commit 

commands. Note that if the transaction is aborted, the user can be notified before the 

DBMS is instructed to abort it. However, in case of commit, the user notification has to 

follow the successful servicing (by the DBMS) of the commit command, for reliability 

reasons 
ii Consistency 
 

The consistency of a transaction is simply its correctness. In other words, a transaction is 

a correct program that maps one consistent database state to another. Verifying that 

transactions are consistent is the concern of semantic data control, covered in Chapter 6. 

ensuring transaction consistency as defined at the beginning of this chapter, on the other 

hand, is the objective of concurrency control mechanisms, which we discuss in Chapter 

11. 

 



There is an interesting classification consistency that parallels our discussion above 

and is equally important. This classification groups database into four levels of 

consistency [Gray et al., 1976]. In the following definition (which is taken verbatim from 

the original paper), dirty data refers to data values that have been updated by a transaction 

prior to its commitment. Then, based on the concept of dirty data, the four levels are 

defined as follows: 

 

“Degree 3: Transaction T sees degree 3 consistency if: 

 

1. T does not overwrite dirty data of other transactions. 

2. T does not commit any writes until it completes all its writes [i.e., until the end of 

transaction (EOT)]. 

3. T does not read dirty data from other transactions.  

4. Other transactions do to dirty any data read by T before T completes. 

 

Degree 2: Transaction T sees degree 2 consistency if: 

 

1. T does not overwrite dirty data of other transactions. 

2. T does not commit any writes before EOT. 

3. T does not read dirty data from other transactions. 

 

Degree 1: Transaction T sees degree 1 consistency if: 

 

1. T does not overwrite dirty data of other transactions. 

2. T does not commit any writes before EOT. 

 

Degree 0: Transaction T sees Degree 0 consistency if: 

 

1. T does not overwrite dirty data of other transactions.” 

 

Of course, it is true that a higher degree of consistency encompasses all the lower 

degrees. The point in defining multiple levels of consistency is to provide application 

programmers the flexibility to define transactions that operate at different levels. 

Consequently, while some transactions operate at Degree 3 consistency level, other may 

operate at lower levels and may see, for example, dirty data. 

 

iii. Transaction recovery  
 One can generally talk about two types of failures. A transaction itself may fail due 

to input data errors, deadlocks, or other factors. In these cases either the transaction 

aborts itself, as we have seen in Example 10.2, or the DBMS may abort it while handling 

deadlocks, for example. Maintaining transaction atomicity in the presence of this type of 

failure is commonly called the transaction recovery. The second type of failure is caused 

by system crashes, such as media failures, processor failures, communication link 

breakages, power outages, and so on. Ensuring transaction atomicity in the presence of 

system crashes is called crash recovery. 

 



Iv three types of workflows are identified: 
 

1. Human-oriented workflows, which involve humans in performing the tasks. The 

system support is provided to facilitate collaboration and coordination among 

humans, but it is the humans themselves who are ultimately responsible for the 

consistency of the actions. 

 

2. System-oriented workflows are those which consist of computation-intensive and 

specialized tasks that can be executed by a computer. The system support in this 

case is substantial and involves concurrency control and recovery, automatic task 

execution, notification, etc. 

 

3. Transactional workflows range in between human-oriented and system-oriented 

workflows and borrow characteristics from both. They involve “coordinated 

execution of multiple tasks that (a) may involve humans, (b) require access to 

HAD [heterogeneous, autonomous, and/or distributed] systems, and (c) support 

selective use of transactional properties [i.e., ACID properties] for individual 

tasks or entire workflows.” [Georgakopoulos et al., 1995]. 

 

4. Comment on “workflows are better than flat and nested 

transaction” 
Nested Transactions 
 

An alternative transaction model is to permit a transaction to include other transactions 

with their own begin and commit points. Such transactions are called nested transactions. 

These transactions that are embedded in another one are usually called subtransactions. 

 

Example  

 

Let us extend the reservation transaction of Example. Most travel agents will make 

reservations for hotels and car rentals in addition to the flights. If one chooses to 

specify all of this as one transaction, the reservation transaction would have the 

following structure: 

 

Begin_transaction Reservation 

begin 
 Begin_transaction Airline 

      … 

 end. {Airline} 

 Begin_transaction Hotel 

      … 

 end. { Hotel } 

 Begin_transaction Car 

      … 

 end. { Car } 



end. 

 

Nested transactions have received considerable interest as a more generalized 

transaction concept. The level of nesting is generally open, allowing subtransactions 

themselves to have nested transactions. This generality is necessary to support application 

areas where transactions are more complex than in traditional data processing.  

 

In this taxonomy, we differentiate between closed and open nesting because of their 

termination characteristics. Closed nested transactions commit in a bottom-up fashion 

through the root. Thus, a nested subtransaction begins after its parent and finishes before 

it, and the commitment of the subtransactions is conditional upon the commi8tment of the 

parent. The semantics of these transaction enforce atomicity at the top-most level. Open 

nesting relaxes the top-level atomicity restriction of closed nested transactions. Therefore, 

an open nested transaction allows its partial results to be observed outside the transaction. 

Sagas and split transactions are examples of open nesting.  

 

A saga is a “sequence of transactions that can be interleaved with other transactions” 

are run to recover from a partial execution. A compensating transaction effectively does 

the inverse of the transaction that it is associated with. For example, if the transaction 

adds $100 to a bank account, its compensating transaction deducts $100 from the same 

bank account. If a transaction is viewed as a function, f, that maps the old database state 

to a new database state, its compensating transaction is the inverse function, f’. 

 

Two properties of sagas are: (1) only two levels of nesting are allowed, and (2) at the 

outer level, the system does not support full atomicity. Therefore, a saga differs from a 

closed nested transaction in that its level structure is more restricted (only 2) and that it is 

open (the partial results of component transactions or sub-sagas are visible to the 

outside). Furthermore, the transactions that make up a saga have to be executed 

sequentially. 

 

The saga concept is extended in and placed within a more general model that deals 

with long-lived transactions and with activities which consist of multiple steps. The 

fundamental concept of the model is that of a module which captures code segments that 

accomplish a given task and access a database in the process. The modules are modeled 

(at some level) as sub-sagas which communicate with each other via messages over ports. 

The transactions that make up a saga can be executed in parallel. The model is multi-

layer where each subsequent layer adds a level of abstraction. 

 

The advantages of nested transaction are the following. First, they provide a higher-

level of concurrency among transactions. Since a transaction consists of a number of 

other transactions, more concurrency is possible within a single transaction. For example, 

if the reservation transaction of Example is implemented as a flat transaction, it may not 

be possible to access records about specific flight concurrently. In other words, if one 

travel agent issues the reservation transaction for a given flight, any concurrent 

transaction that wishes to access same flight data will have to wait until the termination 

of the first, which includes the hotel and car reservation activities in addition to flight 



reservation. However, a nested implementation will permit the second transaction to 

access the flight data as soon as the Airline subtransaction of the first reservation 

transaction is completed. In other words, it may be possible to perform a finer level of 

synchronization among concurrent transactions. 

 

A second argument in favor of nested transaction is related to recovery. It is possible 

to recover independently from failures of each subtransaction. This limits the damage to a 

smaller part of the transaction, making it less costly to recover. In a flat transaction, if any 

operation fails, the entire transaction has to be aborted and restarted, whereas in a nested 

transaction, if an operation fails, only the subtransaction containing that operation needs 

to be aborted and restarted.  

 

Finally, it is possible to create new transactions from existing ones simply by 

inserting the old one inside the new one as a subtransaction.  

 

 

Workflows 
 

Flat transactions model relatively simple and short activities very well. However, they are 

less appropriate for modeling longer and more elaborate activities. That is the reason for 

the development of the various nested transaction models discussed above. It has been 

argued that these extensions are not sufficiently powerful to model business activities: 

“after several d3ecades of data processing, we have learned that we have not won the 

battle of modeling and automating complex enterprises” To meet these needs, more 

complex transaction models which are combinations of open and nested transactions have 

been proposed. There are well-justified arguments for not calling these transactions, since 

they hardly follow any of the ACID properties; a more appropriate name that has been 

proposed is a workflow  

The term “workflow,” unfortunately, does not have a clear and uniformly accepted 

meaning. A working definition is that a workflow is “a collection of tasks organized to 

accomplish some business process.” This definition, however, leaves a lot undefined. 

This is perhaps unavoidable given the very different contexts where this term is used. In 

three types of workflows are identified: 

 

4. Human-oriented workflows, which involve humans in performing the tasks. The 

system support is provided to facilitate collaboration and coordination among 

humans, but it is the humans themselves who are ultimately responsible for the 

consistency of the actions. 

 

5. System-oriented workflows are those which consist of computation-intensive and 

specialized tasks that can be executed by a computer. The system support in this 

case is substantial and involves concurrency control and recovery, automatic task 

execution, notification, etc. 

 

6. Transactional workflows range in between human-oriented and system-oriented 

workflows and borrow characteristics from both. They involve “coordinated 



execution of multiple tasks that (a) may involve humans, (b) require access to 

HAD [heterogeneous, autonomous, and/or distributed] systems, and (c) support 

selective use of transactional properties [i.e., ACID properties] for individual 

tasks or entire workflows.”  

 

Among the features of transactional workflows, the selective use of transactional 

properties is particularly important as it characterizes possible relaxations of 

ACID properties. 

 

In this book, our primary interest is with transactional workflows. There have been 

many transactional workflow proposals which differ in a number of ways. The common 

point among them is that a workflow is defined as an activity consisting of a set of tasks 

with well-defined precedence relationship among them. 

 

Example  

 

Let us further extend the reservation transaction of Example. The entire reservation 

activity consists of the following taks and involves the following data. 

 

 Customer request is obtained (task T1) and Customer Database is accessed to 

obtain customer information, preferences, etc.; 

 Airline reservation is performed (T2) by accessing the Flight Database; 

 Hotel reservation is performed (T3), which may involve sending a message to the 

hotel involved; 

 Auto reservation is performed (T4), which may also involve communication with 

the car rental company; 

 Bill is generated (T5) and the billing info is recorded in the billing database. 

 

Figure depicts this workflow where there is a serial dependency of T2 on T1, and T3, 

T4 on T2; however, T3 and T4 (hotel and car reservations) are performed in parallel 

and T5 waits until their completion. 

 

A number of workflow model go beyond this basic model by both defining more 

precisely what tasks can be and by allocating different relationships among the tasks. In 

the following, we define one model which is similar to the models.A workflow is 

modeled as an activity which has open nesting semantics in that it permits partial results 

to be visible outside the activity boundaries. Thus, tasks which make up the activity are 

allowed to commit individually. Tasks may be other activities (with the same open 

transaction semantics) or closed nested transactions that make their results visible to the 

entire system when they commit. Even though an activity can have both other activities 

and closed nested transactions as its component, a closed nested transaction task can only 

be composed of other closed nested transactions (i.e., once closed nesting semantics 

begins, it is maintained for all components). 

 

 



An activity commits when its components are read to commit. However, the 

components commit individually, without waiting for the root activity to commit. This 

raises problems in dealing with aborts since when an activity aborts, all of its components 

should be aborted. The problem is dealing with the components that have already 

committed. Therefore, compensating transactions are defined for the components of an 

activity. Thus, if a component has already committed when and activity aborts, the 

corresponding compensating transaction is executed to “undo” its effects. 

 

Some components of an activity may be marked as vital. When a vital component 

aborts, its parent must also abort. If a non-vital component of a workflow model aborts, it 

may continue executing. A workflow, on the other hand, always aborts when one of its 

components aborts. For example, in the reservation workflow of T1 (airline reservation) 

and T2 (hotel reservation) may be declared as vital so that if an airline reservation or a 

hotel reservation cannot be made, the workflow aborts and the entire trip is canceled. 

However, if a car reservation cannot be committed, the workflow can still successfully 

terminate. 

 

It is possible to define contingency tasks which are invoked if their counter-parts fail. 

For example, in the Reservation example presented earlier, one can specify that the 

contingency to making a reservation at Hilton is to make a reservation Sheraton. Thus, if 

the hotel reservation component for Hilton falls, the Sheraton alternative is tired rather 

than aborting the task and the entire workflow. 

 

 

Unit V 

 

1.   Discuss the seriazalibility theory in concurrency control. 
SERIALIZABILITY THEORY 

 

the concurrent execution of transactions leaves the database in a state that can be 

achieved by their serial execution in some order, problems such as lost updates will be 

resolved. This is exactly the point of the serializability argument. The remainder of this 

section addresses serializability issues more formally. 

 

A schedule S (also called a history) is defined over a set of transactions                   T 

= {T1, T2, … , Tn} and specifies an interleaved order of execution of these transactions’ 

operations. Based on the definition of a transaction introduced in Section 10.1, the 

schedule can be specified as a partial order over T. We need a few preliminaries, though, 

before we present the formal definition. 

 

Recall the definition of conflicting operations that we gave in Chapter 10. Two 

operations Oij(x) and Okl(x) (i and k not necessarily distinct) accessing the same database 

entity x are said to be in conflict if at least one of them is a write. Note two things in this 

definition. First, read operations do not conflict with each other. We can, therefore, talk 

about two types of conflicts: read-write (or write-read), and write-write. Second, the two 



operations can belong to the same transaction or to two different transactions. In the latter 

case, the two transactions are said to be conflicting. Intuitively, the existence of a conflict 

between two operations indicate that their order of execution is important. The ordering 

of two read operations is insignificant. 

 

We first define a complete schedule, which defines the execution order of all 

operations in its domain. We will then define a schedule as a prefix of a complete 

schedule. Formally, a complete schedule c

TS defined over a set of transactions               T 

= {T1, T2, … , Tn} is a partial order c

TS = {
T ,

T }where 

 

1.   i

n

iT  1 . 

2.   i

n

iT  1 . 

3.    For any two conflicting operations Oij, Okl  T , > either Oij, T Okl, or         

Okl, T Oij. 

 

The first condition simply states that the domain of the schedule is the union of the 

domains of individual transactions. The second condition defines the ordering relation as 

a superset of the ordering relations of individual transaction. This maintains the ordering 

of operations within each transaction. The final condition simply defines the execution 

order among conflicting operations. 

 

Example  

 

Consider the two transactions from Example 10.8. They were specified as 

 

   T1:   Read(x)   T2:    Read(x) 

           x ← x + 1            x ← x + 1 

           Write(x)            Write(x) 

           Commit            Commit 

 

A possible complete schedule c

TS over T = { T1, T2} can be written as the following 

partial order (where the subscripts indicate the transactions): 

 

     c

TS = {
T ,

T } 

 

 

where 

    1  = {R1(x), W1(x), C1} 

    2  = {R2(x), W2(x), C2} 

 

Thus 

   

   T = 
1 

2 = {R1(x), W1(x), C1, R2(x), W2(x)} 



 

and 

 

 
T = {(R1, R2), (R1, W1), (R1, C1), (R1, W2), (R1, C2), (R2, W1), 

(R2, C1), (R2, W2), (R2, C2), (W1, C1), (W1, W2), (W1, C2), 

(C1, W2), (C1, C2), (W2, C2)}  

 

2. Explain nested distributed transaction 
 

Nested Distributed Transactions 

 
We introduced the nested transaction model in the previous chapter. The concurrent 

execution of nested transactions is interesting, especially since they are good candidates 

for distributed execution. 

 

The concurrency control of nested transactions have generally followed a locking-

based approach. The following rules govern the management of the locks and the 

completion of transaction execution in the case of closed nested transactions: 

 

1. Each subtransaction executes as a transaction and upon completion transfers its 

lock to its parent transaction. 

2. A parent inherits both the locks and the updates of its committed sub-transactions. 

3. the inherited state will be visible only to descendants of the inheriting parent 

transaction. However, to access the sate, a descendant must acquire appropriate 

locks. Lock conflicts are determined as for flat transactions, except that one 

ignores inherited locks retained by ancestor’s of the requesting subtransaction. 

4. If a subtransaction aborts, then all locks and updates that the subtransaction and 

its descendants are discarded. The parent of an aborted subtransaction need not, 

but may, choose to abort. 

 

Prom the perspective of ACID properties, closed nested transactions relax durability 

since the effects of successfully completed subtransactions can be erased if an ancestor 

transaction aborts. They also relax the isolation property in a limited way since they share 

their state with other subtransactions within the same nested transaction. 

 

The distributed execution potential of nested transactions is obvious. After all, nested 

transactions are meant to improve intra-transaction concurrency and one can view each 

subtransaction as a potential unit of distribution if data are also appropriately distributed. 

 

However, from the perspective of lock management, some care has to be observe. 

When subtransactions release their locks to their parents, these lock releases cannot be 

reflected in the lock tables automatically. Open nested transactions are even more relaxed 

than their closed nested counterparts. They have been called ‘anarchic” forms of nested 

transactions The open nested transaction model is best exemplified in the saga model  



From the perspective of lock management, open nested transactions are easy to deal 

with. The locks held by a subtransaction are released as soon as it commits or aborts and 

this is reflected in the lock tables. 

 

 

Consider two transactions that transfer funds from one bank account to another: 

 

  T1: Withdraw(o, x)  T2: Withdraw(o, y) 

   Deposit(p, x)    Deposit(p, y) 

 

The notation here is that each Ti withdraws x amount from account o and deposits that 

amount to account p. the semantics of Withdraw is test-and-with-draw to ensure that the 

account balance is sufficient to meet the withdrawal request. In relational systems, each 

of these abstract operations will be translated to tuple operations Select (Sel), and Update 

(Upd) which will, in turn, be translated into page-level Read and Write operations.  

 

 

2. Explain optimistic concurrency control algorithm 

 
OPTIMISTIC CONCURRENCY CONTROL ALGORITHMS 
 

the conflicts between transactions are quite frequent and do not permit a transaction to 

access a data item if there is a conflicting transaction that accesses that data item. Thus 

the execution of any operation of a transaction follows the sequence of phases: validation 

Generally, this sequence is valid for an update transaction as well as for each of its 

operations. 

 

an operation submitted to an optimistic scheduler is never delayed. The read, 

compute, and write operations of each transaction are processed freely without updating 

the actual database. Each transaction initially makes its updates on local copies of data 

items. The validation phase consists of checking if these updates would maintain the 

consistency of the database. If the answer is affirmative, the changes are made global 

(i.e., written into the actual database). Otherwise, the transaction is aborted and has to 

restart. 

 

only the optimistic approach using timestamps. Our discussion is brief and 

emphasizes concepts rather than implementation details. The reasons for this are twofold. 

First, most of the current work on optimistic methods concentrates on centralized rather 

than distributed DBMSs. Second, optimistic algorithms have not been implemented in 

any commercial or prototype DBMS. Therefore, the information regarding their 

implementation trade-offs is insufficient. As a matter of fact, the only centralized 

implementation of optimistic concepts (not the full algorithm) is in IBM’s IMS-

FASTPATH, which provides primitives that permit the programmer to access the 

database in an optimistic manner.  

 



It differs from pessimistic TO-based algorithms not only by being optimistic byt also 

in its assignment of timestamps. Timestamps are associated only with transactions, not 

with data items (i.e., there are no read or write timestamps). Furthermore, timestamps are 

not assigned to transaction at their initiation but at the beginning of their validation step. 

This is because the timestamps are needed only during the validation phase, and as we 

will see shortly, their early assignment may cause unnecessary transaction rejections. 

 

Each transaction Tj is subdivided (by the transaction manager at the originating site) 

into a number of subtransactions, each of which can execute at many sites. Notationally, 

let us denote by Tij a subtransaction of Ti that executes at site j. Until the validation phase, 

each local execution follows the sequence depicted in Figure 11.13 At that point a 

timestamp is assigned to the transaction which is copied to all its subtransactions. The 

local validation of Ty is performed according to the following rules, which are mutually 

exclusive. 

 

Rule 1. If all transactions Tk where ts(Tk) < ts(Tij) have completed their write phase 

before Tij has started its read phase (Figure 11.14a),3 validation succeeds, because 

transaction executions are in serial order. 

 

Rule 2. If there is any transaction Tk such that ts(Tk)< ts(Tij) which completes its 

write phase while Tij is in its read phase (Figure 11.14b), the validation succeeds if 

WS(Tk)   RS(Tij) = Ø 

 

Rule 3.  If  there is any transaction Tk such that ts(Tk) < ts(Tij) which completes its 

read phase before Tij completes its read phase (Figure 11.14c), the validation succeeds if 

WS (Tk)   RS (Tij) =  and WS(Tk)   WS (Tij) = . 

 

Rule 1 is obvious; it indicates that the transactions are actually executed serially in 

their timestamp order. Rule 2 ensures that none of the data items updated by Tk are read 

by Tij, and that Tk finishes writing its updates into the database before Tij starts writing. 

Thus the updates of Tij will not be overwritten by the updates of Tk. Rule 3 is similar to 

Rule 2, but does not require that Tk finish writing before Tij starts writing. It simply 

requires that the updates of Tk not affect the read phase or the write phase of Tij. 



 
Once a transaction is locally validated to ensure that he local database consistency is 

maintained, it also needs to be globally validated to ensure that the mutual consistency 

rule is obeyed. Unfortunately, there is no known optimistic method of doing this. A 

transaction is globally validated if all the transaction that precede it in the serialization 

order (at that site0 terminate (either by committing or aborting). This is a pessimistic 

method since it performs global validation early and delays a transaction. However, it 

guarantees that transaction execute in the same order at each site. 

 

An advantage of the optimistic concurrency control algorithms is their potential to 

allow a higher level of concurrency. It has been shown [Kung and Robinson, 1981] that 

when transaction conflicts are very rare, the optimistic mechanism performs better than 

locking. A major problem with optimistic algorithms is the higher storage cost. To 

validate a transaction, the optimistic mechanism has to store the read and the write sets of 

terminated transaction. Specifically, the read and write sets of terminated transactions 

that were in progress when transaction Tij, arrived at site j need to be stored in order to 

validate Tij. Obviously, this increases the storage cost. 

 

Another problem is starvation. Consider a situation in which the validation phase of a 

long transaction fails. In subsequent trials it is still possible that the validation will fail 

repeatedly. Of course, it is possible to solve this problem by permitting the transaction 

exclusive access to the database after a specified number of trials. However, this reduces 

the level of concurrency to a single transaction the exact “mix” of transactions that would 

cause an intolerable level of restarts is an issue that remains to be studied. 

 

4. How can Deadlock be prevention and avoidance?   
Deadlock prevention methods guarantee that deadlocks cannot occur in the first place. 

Thus the transaction manager checks a transaction when it is first initiated and does not 

permit it to proceed if it may cause a deadlock. To perform this check, it is required that 



all of the data items that will be accessed by a transaction be predeclared. The transaction 

manager then permits a transaction to proceed if all the data items that it will access are 

available. Otherwise, the transaction is not permitted to proceed. The transaction manager 

reserves all the data items that are predeclared by a transaction that it allows to proceed. 

 

conditional upon the availability of free seats. To be safe, the system would thus need to 

consider the maximum set of data items, even if they end up not being accessed. This 

would certainly reduce concurrency. Furthermore, there is additional overhead in 

evaluating whether a transaction can proceed safely. On the other hand, such systems 

require no run-time support, which reduces the overhead. It has the additional advantage 

that it is not necessary to abort and restart a transaction due to deadlocks. This not only 

reduces the overhead but also makes such methods suitable for systems that have no 

provisions for undoing processes. 

 

 

Deadlock Avoidance  
 

Deadlock avoidance schemes either employ concurrency control techniques that will 

never result in deadlocks or require that schedulers detect potential deadlock situations in 

advance and ensure that they will not occur. We consider both of these cases.  

 

The simplest means of avoiding deadlocks is to order the resources and insist that 

each process request access to these resources in that order. This solution was long ago 

proposed for operating systems. A revised version has been proposed for database 

systems as well [Garcia-Molina, 1979]. Accordingly, the lock units in the distributed 

database are ordered and transactions always request locks in that order. This ordering of 

lock units may be done either globally or locally at each site. In the latter case, it is also 

necessary to order the sites and require that transactions which access data items at 

multiple sites request their locks by visiting the sites in the predefined order. 

 

Another alternative is to make use of transaction timestamps to prioritize transactions 

and resolve deadlocks by aborting transactions with higher (or lower) priorities. To 

implement this type of prevention method the lock manager is modified as follows. If a 

lock request of a transaction Ti is denied, the lock manager does not automatically force 

Ti to wait. Instead, it applies a prevention test to the requesting transaction and the 

transaction that currently holds the lock (say Tj). If the test is passed, it is permitted to 

wait for Tj, otherwise, one transaction or the other is aborted. 

 

WAIT-DIE Rule. If Ti requests a lock on a data item that is already locked by Tj, Tj 

is permitted to wait if and only if Ti is older than Tj. If Ti is younger than Tj, then Ti is 

aborted and restarted with the same timestamp. 

A preemptive version of the same idea is the WOUND-WAIT algorithm, which 

follows the rule: 

 



WOUND-WAIT Rule. If Ti requests a lock on a data item that is already locked by 

Tj, then Ti is permitted to wait if only if it is younger than Tj, otherwise, Tj is aborted 

and the lock is granted to Tj. 

 

The rules are specified from the viewpoint of Ti: Ti waits, Tidies, and Ti wounds Tj. In 

fact, the result of wounding and dying are the same: the affected transaction is aborted 

and restarted. With this perspective, the two rules can be specified as follows: 

 

if ts(Ti) < ts(Tj) then Ti waits Else Ti dies              (WAIT-DIE) 

if ts(Ti) < ts(Tj) then Tj is wounded else Ti waits     (WOUND-WAIT) 

 

 

Notice that in both algorithms the younger transaction is aborted. The difference 

between the two algorithms is whether or not they preempt active transactions. Also note 

that the WAIT-DIE algorithm prefers younger transactions and kills older ones. Thus an 

older transaction tends to wait longer and longer as it gets older. By contrast, the 

WOUND-WAIT rule prefers the older transaction since it never waits for a younger one. 

One of these methods, or a combination, may be selected in implementing a deadlock 

prevention algorithm. 

 

Deadlock avoidance methods are more suitable than prevention schemes for database 

environments. Their fundamental drawback is that they require runtime support for 

deadlock management, which adds to the run-time overhead of transaction execution. 

 

 


