

1

TGPCET/IT

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

‘UNIT –I NOTES

Subject:- Embedded Systems Semester:- VIII

Unit – I

Q:1) What is embedded system? Explain components of embedded system hardware.

Ans:- An embedded system is a combination of computer hardware and software, either fixed in

capability or programmable, designed for a specific function or functions within a larger system.

Industrial machines, agricultural and process industry devices, automobiles, medical equipment,

cameras, household appliances, airplanes, vending machines and toys, as well as mobile devices,

are possible locations for an embedded system.

Embedded systems are computing systems, but they can range from having no user interface (UI)

-- for example, on devices in which the system is designed to perform a single task -- to complex

graphical user interfaces (GUIs), such as in mobile devices. User interfaces can include buttons,

LEDs, touchscreen sensing and more. Some systems use remote user interfaces as well.

Embedded Systems Hardware Components

As we know embedded systems are the combination of hardware and software. There are different

hardware components like power supply, processor, memory, timers and counters that make the

embedded hardware.

Power Supply

The power supply is an essential part of any embedded systems circuits. An embedded system

may need a supply of 5 volts or if it is low power then maybe 3.3 or 1.8v. The supply may be

provided with the help of battery or we can use any wall adapter. It will depend on the application

need.

The power supply circuit can be designed with the help some little knowledge of electronics. For

that, we need a bridge rectifier circuit, capacitor as a filter and a voltage regulator that provides

constant output supply.

Syllabus
Introduction to Embedded System:

Introduction, Embedded system vs General computing system, History of embedded

system, Processor embedded into a system, Embedded hardware units and devices

in a system, Embedded software in a system, examples in a embedded system,

Embedded SoC, Complex system design and processors, Design process in ES,

Formalization of system design, Classification of Es, Skills required in Embedded

system design, Characteristics and quality attributes of Embedded system.

2

Processor

A processor is the main brain inside any embedded systems. This is a major factor that affects the

performance of the system. There are different processors available in the market. An embedded

system may use microprocessor or microcontroller.

The processor comes in different architecture like 8-bit, 16-bit and 32-bit. The 8-bit processor is

generally used in a small application where we need some basic computation like input and output

no heavy processing.

Memory

If we are using a microcontroller like AT89s51, AT89s52 or ATmega. The memory is available

on-chip. We generally talk about two types of memory in the embedded systems

• Read-Only memory(RAM)

• Random Access Memory(ROM)

• Electrically Erasable Programmable Read-Only Memory (EEPROM)

RAM memory is volatile memory and used for temporary storage of the data. And the selection of

it depends on the user need and the application.

The ROM memory or Code Memory. This is used for the storage of the program. Once system

powered, the system fetches the code from the ROM memory.

Timers-Counters
In some application, we need to generate some delay. Like for blinking an LED, we need a delay.

For making square pulse we need a delay.

But there is some issue when we generate the delay from the normal coding style by making any

loop running for a particular time. Definitely, this will give you some delay but the code after this

loop remains in waiting for state and delayed.

So it is not the best approach to generate the delay. For such kind of application where we need a

delay for a specific time interval without affecting the normal code execution, we use timer and

counter.

3

By setting some register for timer and counter using the programming we get the desired delay.

The amount of delay depends on the system frequency and crystal oscillator.

Input and Output

To interact with the embedded systems we need input. The input may be provided by the user or

by some sensor. Sometimes some systems need more input or output. So the processor selection

will be based on I/O.

These input and output are generally divided into ports like P0, P1, P2 and P3 in

8051microcontrollersr. And PA, PB, PC and PD in ATmega series of the microcontroller.

The I/O need to be configured for input or output based on the provided register. And for that, we

need to refer the datasheet of the manufacturer.

Application Specific Circuits

Some hardware components are common while designing the embedded systems. But some are

different and depends on the application need. Like a temperature sensor need a temperature

sensor for sensing the temperature. While others hand an alcohol detector has a sensor to detect

the alcohol level.

But the remaining hardware components might be the same like

Power Supply

Processor

Display Device

Buzzer for Alert

Software Components

Once the hardware is completed we need to build the software for the embedded devices. There

are different software tools for programming and coding. These software tools are referred to as

software components.

How is software embedded into a system?

We need a program written in assembly or in embedded c language. And then we compile it. This

compiled code converted into HEX code. This hex code is programmed or burned into the ROM

of the system using some programmer.

These are the tools that are generally used in embedded system development

Assembler

When you program in assembly language. This assembly language program is converted into the

HEX code using this utility. Then using some hardware called as a programmer we write the chip.

Emulator

4

An emulator is hardware or software tool that has a similar functionality to the target system or

guest system. It enables the host system to execute the functionality and other components. It is a

replica of the target system. And used for debugging the code and issues.

Once program or code is fixed at the host system. It is transferred to the target system.

Debugger

Sometimes we are not getting expected results or output due to errors or bug. There are certain

tools that are specifically used for the debugging process. Where we can see the controls flow and

register value to identify the issue.

Compiler

A compiler is a software tool that converts one programming language into target code that a

machine can understand. The compiler basically used for translating the high-level language into

the low-level language like machine code, assembly language or object code.

Q:2 Write examples and application of embedded system?

Ans:- Applications of Embedded Systems

Embedded systems find numerous applications in various fields such as digital electronics,

telecommunications, computing network, smart cards, satellite systems, military defense system

equipment, research system equipment, and so on. Let us discuss a few practical applications of

embedded systems that are used in designing embedded projects as a part of engineering final year

electronics projects.

IOT Based Energy Meter Reading Through Internet

Internet of Things-IOT based energy meter reading through the internet is an innovative

application of real time embedded systems. Using this project you can avail the facility of

displaying (in the format of chart and gauge) units of power consumed and the cost of

consumption over the internet.

IOT Based Energy Meter Reading Through Internet by Edgefxkits.com

https://www.elprocus.com/wp-content/uploads/2015/03/IOT-Based-Energy-Meter-Reading-Through-Internet-by-Edgefxkits.com_.jpg

5

Digital energy meter is used for designing innovative embedded projects, this digital energy meter

blinking LED will flash around 3200 times for one unit, this LED signal and microcontroller are

interfaced using a light dependent resistor (LDR). Thus, whenever LED flashes, this blinking will

activate the LDR sensor, that sends an interrupt signal to the microcontroller for each flash of

LED. Based on the interrupts received by the microcontroller, it will display the reading of energy

meter on an LCD display which is interfaced it.

IOT Based Energy Meter Reading Through Internet Block Diagram by Edgefxkits.com

This project consists of a GSM modem which is interfaced to the microcontroller using RS232

link and level shifter IC. The reading of energy meter can be sent to the GSM modem, SIM used

in this GSM modem is enabled with internet facility. Thus, the energy meter can be directly

transmitted to a specific web page to display it over the internet and view in the format of

graphical representation from anywhere in the world.

• Internet (IOT) of Things based underground cable fault distance display using GSM

• Electronic passport system using smart card

• Patient body temperature monitoring remotely using Internet of Things (IOT)

• Power saver for street light using high sensitive LDR managed by Arduino

• GSM based prepaid energy meter

• Automatic meter reading system using Zigbee

• A notice board display system using voice commands using an Android phone

• Home automation using voice commands

• Solar based electric fencing system to deter cattle

Q:3 Explain how to get processor embedded into a system.

https://www.elprocus.com/wp-content/uploads/2015/03/IOT-Based-Energy-Meter-Reading-Through-Internet-Block-Diagram-by-Edgefxkits.com_.jpg

6

Ans:- Processors in a System

A processor has two essential units −

• Program Flow Control Unit (CU)

• Execution Unit (EU)

The CU includes a fetch unit for fetching instructions from the memory. The EU has circuits that

implement the instructions pertaining to data transfer operation and data conversion from one

form to another.

The EU includes the Arithmetic and Logical Unit (ALU) and also the circuits that execute

instructions for a program control task such as interrupt, or jump to another set of instructions.

A processor runs the cycles of fetch and executes the instructions in the same sequence as they are

fetched from memory.

Types of Processors

Processors can be of the following categories −

• General Purpose Processor (GPP)

o Microprocessor

o Microcontroller

o Embedded Processor

o Digital Signal Processor

o Media Processor

• Application Specific System Processor (ASSP)

• Application Specific Instruction Processors (ASIPs)

• GPP core(s) or ASIP core(s) on either an Application Specific Integrated Circuit (ASIC) or

a Very Large Scale Integration (VLSI) circuit.

Microprocessor

A microprocessor is a single VLSI chip having a CPU. In addition, it may also have other units

such as coaches, floating point processing arithmetic unit, and pipelining units that help in faster

processing of instructions.

Earlier generation microprocessors’ fetch-and-execute cycle was guided by a clock frequency of

order of ~1 MHz. Processors now operate at a clock frequency of 2GHz

7

Microcontroller

A microcontroller is a single-chip VLSI unit (also called microcomputer) which, although having

limited computational capabilities, possesses enhanced input/output capability and a number of

on-chip functional units.

CPU RAM ROM

I/O Port Timer Serial COM Port

Microcontrollers are particularly used in embedded systems for real-time control applications with

on-chip program memory and devices.

Microprocessor vs Microcontroller

Let us now take a look at the most notable differences between a microprocessor and a

microcontroller.

Microprocessor Microcontroller

Microprocessors are multitasking in nature. Can

perform multiple tasks at a time. For example, on

computer we can play music while writing text in

text editor.

Single task oriented. For example, a washing

machine is designed for washing clothes only.

RAM, ROM, I/O Ports, and Timers can be added

externally and can vary in numbers.

RAM, ROM, I/O Ports, and Timers cannot be

added externally. These components are to be

embedded together on a chip and are fixed in

numbers.

Designers can decide the number of memory or

I/O ports needed.

Fixed number for memory or I/O makes a

microcontroller ideal for a limited but specific

task.

8

External support of external memory and I/O ports

makes a microprocessor-based system heavier and

costlier.

Microcontrollers are lightweight and cheaper

than a microprocessor.

External devices require more space and their

power consumption is higher.

A microcontroller-based system consumes less

power and takes less space.

Q:5) Write short note on Compilers & Assemblers?

Ans:- Compiler

A compiler is a computer program (or a set of programs) that transforms the source code written

in a programming language (the source language) into another computer language (normally

binary format). The most common reason for conversion is to create an executable program. The

name "compiler" is primarily used for programs that translate the source code from a highlevel

programming language to a low-level language (e.g., assembly language or machine code).

Cross-Compiler

If the compiled program can run on a computer having different CPU or operating system than the

computer on which the compiler compiled the program, then that compiler is known as a cross-

compiler.

Decompiler

A program that can translate a program from a low-level language to a high-level language is

called a decompiler.

Language Converter

A program that translates programs written in different high-level languages is normally called a

language translator, source to source translator, or language converter.

A compiler is likely to perform the following operations −

• Preprocessing

• Parsing

• Semantic Analysis (Syntax-directed translation)

• Code generation

• Code optimization

Assemblers

An assembler is a program that takes basic computer instructions (called as assembly language)

and converts them into a pattern of bits that the computer's processor can use to perform its basic

9

operations. An assembler creates object code by translating assembly instruction mnemonics into

opcodes, resolving symbolic names to memory locations. Assembly language uses a mnemonic to

represent each low-level machine operation (opcode).

Q:6 Short note on Emulator & Simulator

Ans:- Debugging Tools in an Embedded System

Debugging is a methodical process to find and reduce the number of bugs in a computer program

or a piece of electronic hardware, so that it works as expected. Debugging is difficult when

subsystems are tightly coupled, because a small change in one subsystem can create bugs in

another. The debugging tools used in embedded systems differ greatly in terms of their

development time and debugging features. We will discuss here the following debugging tools −

• Simulators

• Microcontroller starter kits

• Emulator

Simulators

Code is tested for the MCU / system by simulating it on the host computer used for code

development. Simulators try to model the behavior of the complete microcontroller in software.

Functions of Simulators

A simulator performs the following functions −

• Defines the processor or processing device family as well as its various versions for the

target system.

• Monitors the detailed information of a source code part with labels and symbolic

arguments as the execution goes on for each single step.

• Provides the status of RAM and simulated ports of the target system for each single step

execution.

• Monitors system response and determines throughput.

• Provides trace of the output of contents of program counter versus the processor registers.

• Provides the detailed meaning of the present command.

• Monitors the detailed information of the simulator commands as these are entered from the

keyboard or selected from the menu.

• Supports the conditions (up to 8 or 16 or 32 conditions) and unconditional breakpoints.

• Provides breakpoints and the trace which are together the important testing and debugging

tool.

• Facilitates synchronizing the internal peripherals and delays.

10

Microcontroller Starter Kit

A microcontroller starter kit consists of −

• Hardware board (Evaluation board)

• In-system programmer

• Some software tools like compiler, assembler, linker, etc.

• Sometimes, an IDE and code size limited evaluation version of a compiler.

A big advantage of these kits over simulators is that they work in real-time and thus allow for easy

input/output functionality verification. Starter kits, however, are completely sufficient and the

cheapest option to develop simple microcontroller projects.

Emulators

An emulator is a hardware kit or a software program or can be both which emulates the functions

of one computer system (the guest) in another computer system (the host), different from the first

one, so that the emulated behavior closely resembles the behavior of the real system (the guest).

Emulation refers to the ability of a computer program in an electronic device to emulate (imitate)

another program or device. Emulation focuses on recreating an original computer environment.

Emulators have the ability to maintain a closer connection to the authenticity of the digital object.

An emulator helps the user to work on any kind of application or operating system on a platform

in a similar way as the software runs as in its original environment.

Q:7) Explain the Peripheral Devices in Embedded Systems

Ans:- Embedded systems communicate with the outside world via their peripherals, such as

following

• Serial Communication Interfaces (SCI) like RS-232, RS-422, RS-485, etc.

• Synchronous Serial Communication Interface like I2C, SPI, SSC, and ESSI

• Universal Serial Bus (USB)

• Multi Media Cards (SD Cards, Compact Flash, etc.)

• Networks like Ethernet, LonWorks, etc.

• Fieldbuses like CAN-Bus, LIN-Bus, PROFIBUS, etc.

• imers like PLL(s), Capture/Compare and Time Processing Units.

• Discrete IO aka General Purpose Input/Output (GPIO)

• Analog to Digital/Digital to Analog (ADC/DAC)

• Debugging like JTAG, ISP, ICSP, BDM Port, BITP, and DP9 ports

Criteria for Choosing Microcontroller

11

While choosing a microcontroller, make sure it meets the task at hand and that it is cost effective.

We must see whether an 8-bit, 16-bit or 32-bit microcontroller can best handle the computing

needs of a task. In addition, the following points should be kept in mind while choosing a

microcontroller −

• Speed − What is the highest speed the microcontroller can support?

• Packaging − Is it 40-pin DIP (Dual-inline-package) or QFP (Quad flat package)? This is

important in terms of space, assembling, and prototyping the end-product.

• Power Consumption − This is an important criteria for battery-powered products.

• Amount of RAM and ROM on the chip.

• Count of I/O pins and Timers on the chip.

• Cost per Unit − This is important in terms of final cost of the product in which the

microcontroller is to be used.

Further, make sure you have tools such as compilers, debuggers, and assemblers, available with

the microcontroller. The most important of all, you should purchase a microcontroller from a

reliable source.

Q:8) What are the characteristics and advantages of embedded systems

Ans:- Characteristics of an Embedded System

• Single-functioned − An embedded system usually performs a specialized operation and

does the same repeatedly. For example: A pager always functions as a pager.

• Tightly constrained − All computing systems have constraints on design metrics, but those

on an embedded system can be especially tight. Design metrics is a measure of an

implementation's features such as its cost, size, power, and performance. It must be of a

size to fit on a single chip, must perform fast enough to process data in real time and

consume minimum power to extend battery life.

• Reactive and Real time − Many embedded systems must continually react to changes in

the system's environment and must compute certain results in real time without any delay.

Consider an example of a car cruise controller; it continually monitors and reacts to speed

and brake sensors. It must compute acceleration or de-accelerations repeatedly within a

limited time; a delayed computation can result in failure to control of the car.

• Microprocessors based − It must be microprocessor or microcontroller based.

• Memory − It must have a memory, as its software usually embeds in ROM. It does not

need any secondary memories in the computer.

• Connected − It must have connected peripherals to connect input and output devices.

• HW-SW systems − Software is used for more features and flexibility. Hardware is used for

performance and security.

12

Advantages

• Easily Customizable

• Low power consumption

• Low cost

• Enhanced performance

Disadvantages

• High development effort

• Larger time to market

Basic Structure of an Embedded System

The following illustration shows the basic structure of an embedded system −

• Sensor − It measures the physical quantity and converts it to an electrical signal which can

be read by an observer or by any electronic instrument like an A2D converter. A sensor

stores the measured quantity to the memory.

• A-D Converter − An analog-to-digital converter converts the analog signal sent by the

sensor into a digital signal.

• Processor & ASICs − Processors process the data to measure the output and store it to the

memory.

• D-A Converter − A digital-to-analog converter converts the digital data fed by the

processor to analog data

• Actuator − An actuator compares the output given by the D-A Converter to the actual

(expected) output stored in it and stores the approved output.

Q:9 Explain the various classification of Embedded systems.

Ans:- An embedded system is an electronic system that has software and is embedded in

computer hardware. It is programmable or non-programmable depends on the task specification.

To be concern about the characteristics of an embedded system involved its speed, size, power,

13

reliability, accuracy and adaptability. Therefore, when the embedded system performs the

operations at high speed, then it can be used for real-time applications.

To be concern about the characteristics of an embedded system we can classify it into two broad

categories are as follows;

1. Based on performance and functional requirements

2. Based on performance of the microcontroller.

Classification of embedded systems image as flowchart

Figure: Classification of Embedded system

Based on performance and functional requirements of system embedded systems are classified

into four categories as follows;

• Stand alone embedded systems

• Real time embedded systems

• Networked embedded systems

• Mobile embedded systems

Stand alone embedded system: This system don’t require host system like a computer system, it

works by itself. It takes the input from the input ports either analog or digital and processes,

computes and transfers the data and gives the resulting data through the connected device-which

controls, drives or displays the associated devices. For examples stand alone embedded systems

are mp3 players, digital cameras, video game consoles, microwave ovens and temperature

measurement systems.

Real time embedded systems:

A system called real time embedded system, which gives a required output in a particular time.

These types of embedded systems follow the time deadlines for completion of a task. Real time

https://d3e8mc9t3dqxs7.cloudfront.net/wp-content/uploads/sites/11/2017/05/Classification-of-embedded-systems-image-as-flowchart.png

14

embedded systems are classified into two types such as soft real time embedded system and hard

real time embedded systems based on the time preciseness.

Networked embedded system: Networked embedded systems are related to a network to access

the resources. The connected network can be LAN, WAN or the internet. The connection can be

any wired or wireless. This kind of embedded system is the fastest growing technological area in

embedded system applications. The embedded web server is a type of system wherein all

embedded devices are connected to a web server and accessed and controlled by a web browser.

For example the LAN networked embedded system is a home security system wherein all sensors

are connected and run on the protected protocol TCP/IP.

Mobile Embedded Systems: Mobile embedded systems are highly preferable in portable

embedded devices like cell phones, mobiles, digital cameras, wireless mp3 players and personal

digital assistants, etc. The basic limitation of these devices is the other resources and limitation of

memory.

Another category of embedded system based on performance of microcontroller and it is further

classified into three categories as follows;

1. Small scale embedded system

2. Medium scale embedded system

3. Sophisticated Embedded Systems

Small Scale Embedded Systems: These types of embedded systems are designed with a single 8-

bit or 16-bit microcontroller. They have tiny scaled hardware, software complexities and involve

board-level design. They may even be battery operated. When embedded software is developing

for this tiny scaled hardware, an editor, an assembler or cross assembler, specific to the

microcontroller or processor used, are the main programming tools. Usually, ‘C programming

language’ is used for developing these systems. ‘C’ program compilation is done into the

assembly, and executable codes are then appropriately located in the system memory. The

software has to fit within the memory existing and keep in view the need to limit power

dissipation when system is running continuously.

Medium Scale Embedded Systems: These systems are usually designed with a single or few 16-

bit or 32-bit microcontrollers or Digital Signal Processor (DSPs) or Reduced Instruction Set

Computers (RISCs) being used. These system have both hardware and software complexities. For

complex software design of medium scale embedded system, there are the following

programming tools: RTOS, Source code engineering tool, Simulator, Debugger and Integrated

Development Environment (IDE). Software tools also give the clarifications to the hardware

complexities. An assembler is of slight use as a programming tool. These systems may also utilize

the readily available Application-Specific Standard Product (ASSPs) and IPs for the various

functions. For example, for the bus interfacing, encrypting, deciphering, discrete cosine

transformation and inverse transformation, TCP/IP protocol is stacking and network connecting

functions.

Sophisticated Embedded Systems: Sophisticated embedded systems have massive hardware and

software complexities and may require ASIPs, IPs and PLAs scalable or configurable processors

15

and programmable logic arrays. They are used for cutting edge applications that require hardware

and software co-design and integration in the final system. They are constrained by the processing

speeds available in their hardware units. Certain software functions such as encryption and

deciphering algorithms, discrete cosine transformation and inverse transformation algorithms,

TCP/IP protocol stacking and network driver functions are implemented in the hardware to obtain

additional speeds by saving time. Some of the functions of the hardware resources in the system

are also implemented by the software. Development tools for these systems may not be readily

available at a reasonable cost or may not be available at all. In some cases, a compiler or

retargetable (Compiler configures according to the specific target) compiler might have to be

developed for these.

Q:10) Explain the embedded software development process

Ans:- Development Process of Embedded Systems

The development process of an embedded systems mainly includes hardware design process and

software design process. Unlike the design process of software on a typical platform, the

embedded system design implies that both hardware and software are being designed similarly

Although this isn’t continuously the case, it is a truth for many designs currently. The deeper

implications of this concurrent design process profoundly impact how embedded systems are

designed.

Embedded System Design Process

The different steps in an embedded system design process include the following.

• Determine the requirements

• Design the system architecture

• Select the OS

• Choose the processor and peripherals

• Choose the development platform

• Code the applications and optimize

• Verify the software on the host system

• Verify the software on the target system

16

TGPCET/IT

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

‘UNIT –II NOTES

Subject:- Embedded Systems Semester:- VIII

Unit – I

 Q:1 Define the following terms. i)Cross compiler. ii) Cross Assemblers. ii) Host

Machine. iv) Target Machine.
Ans:-

i) Cross Compiler:- A cross compiler is a compiler capable of creating

executable code for a platform other than the one on which the compiler is

running. For example, a compiler that runs on a Windows 7 PC but

generates code that runs on Android smartphone is a cross compiler.

A cross compiler is necessary to compile for multiple platforms from one

machine. A platform could be infeasible for a compiler to run on, such as

for the microcontroller of an embedded system because those systems

contain no operating system. In paravirtualization one machine runs many

operating systems, and a cross compiler could generate an executable for

each of them from one main source.

The Canadian Cross is a technique for building cross compilers for other

machines. Given three machines A, B, and C, one uses machine A (e.g.

running Windows XP on an IA-32 processor) to build a cross compiler that

runs on machine B (e.g. running Mac OS X on an x86-64 processor) to

create executables for machine C (e.g. running Android on an ARM

processor). When using the Canadian Cross with GCC, there may be four

compilers involved:

The proprietary native Compiler for machine A (1) (e.g. compiler from

Microsoft Visual Studio) is used to build the gcc native compiler for machine

A (2).

The gcc native compiler for machine A (2) is used to build the gcc cross

Syllabus
Embedded System Design:

Hardware and Software design, Co-design, Embedded Software development Tools:

In Circuit Emulators, Cross compilers, cross assemblers and tool chain, linker

locator, Address resolution, PROM programmer, Rom Emulator. Memories: EPROM,

PROM, Flash.

17

compiler from machine A to machine B (3)

The gcc cross compiler from machine A to machine B (3) is used to build

the gcc cross compiler from machine B to machine C (4)

2) Cross Assembler:-

A cross assembler is a program which generates machine code for a processor

other than the one it is currently run on.

An assembler is a program that converts assembly language ("human readable"

text - if you are a nerd) into the actual binary processor specific machine code

(non-human readable binary code - unless you are a nerd). Normally the machine

code generated is for the processor used in the machine it is run on. A cross

assembler takes this conversion process a step further by allowing you to

generate machine code for a different processor than the one the compiler is run

on.

Cross assemblers are generally used to develop programs which are supposed to

run on game consoles, appliances and other specialized small electronics systems

which are not able to run a development environment. They can also be used to

speed up development for low powered system, for example XAsm enables

development on a PC based system for a Z80 powered MSX computer. Even

though the MSX system is capable of running an assembler, having the additional

memory, processor speed and storage capabilities like a harddisk significantly

speeds up development efforts

3) Host Machine:-

A host virtual machine is the server component of a virtual machine (VM), the

underlying hardware that provides computing resources to support a particular

guest virtual machine (guest VM).

The host virtual machine and the guest virtual machine are the two components

that make up a virtual machine. The guest VM is an independent instance of an

operating system and associated software and information. The host VM is the

hardware that provides it with computing resources such as processing power,

memory, disk and network I/O (input/output), and so on.

A virtual machine monitor (VMM) or hypervisor intermediates between the host

and guest VM, isolating individual guest VMs from one another and making it

possible for a host to support multiple guests running different operating systems.

A guest VM can exist on a single physical machine but is usually distributed

across multiple hosts for load balancing. A host VM, similarly, may exist as part

of the resources of a single physical machine or as smaller parts of the resources

of multiple physical machines.

Q: 2) Write in brief about in – circuit formulator.

Ans:-
An ICE is just one of the many debugging tools at your disposal. It's also

among the most powerful.
Embedded systems pose unique debugging challenges. With neither terminal

http://marksletterink.com/msx/xasm/
https://searchservervirtualization.techtarget.com/definition/hypervisor

18

nor display (in most cases), there's no natural way to probe these devices, to

extract the behavioral information needed to find what's wrong. This magazine

is filled with ads from vendors selling a wide variety of debuggers. They let us

connect an external computer to the system being debugged to enable single

stepping, breakpoints, and all of the debug resources enjoyed by programmers

of desktop computers.

An in-circuit emulator (ICE) is one of the oldest embedded debugging tools,

and is still unmatched in power and capability. It is the only tool that

substitutes its own internal processor for the one in your target system. Using

one of a number of hardware tricks, the emulator can monitor everything that

goes on in this on-board CPU, giving you complete visibility into the target

code's operation. In a sense, the emulator is a bridge between your target and

your workstation, giving you an interactive terminal peering deeply into the

target and a rich set of debugging resources.

Until just a few years ago, most emulators physically replaced the target

processor. Users extracted the CPU from its socket, plugging the emulator's

cable in instead. Today, we're usually faced with a soldered-in surface-

mounted CPU, making connection strategies more difficult. Some emulators

come with an adapter that clips over the surface-mount processor, tri-stating

the device's core, and replacing it with the emulator's own CPU. In other

cases, the emulator vendor provides adapters that can be soldered in place of

the target CPU. As chip sizes and lead pitches shrink, the range of connection

approaches expands.

Beware: connecting the emulator will probably be difficult and frustrating.

Physical features of the target system and CPU placement can get in the way

of some adapters, so plan for ICE insertion at hardware design time, if at all

possible. Add at least a few days to your schedule. Work closely with the

vendors to surmount these difficulties.

 Q:3) "Locating program components properly". How does locator

resolute this issue in the embedded Environment? Explain.

Ans:- The locator uses this information to assign physical memory addresses
to each of the code and data sections. It will produce an output file that

contains a binary image that can be loaded into the target ROM. A commonly
used linker/locater for embedded systems is ld (GNU).

When build tools run on the same system as the program they produce, they
can make a lot of assumptions about the system. This is typically not the case
in embedded software development, where the build tools run on

a host computer that differs from the target hardware platform. There are a lot
of things that software development tools can do automatically when the

target platform is well defined. [1] This automation is possible because the
tools can exploit features of the hardware and operating system on which your
program will execute. For example, if all of your programs will be executed on

IBM-compatible PCs running Windows, your compiler can automate—and,
therefore, hide from your view—certain aspects of the software build process.

https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html#ftn.ID-d1766e340

19

Embedded software development tools, on the other hand, can rarely make

assumptions about the target platform. Instead, the user must provide some
of her own knowledge of the system to the tools by giving them more explicit
instructions.

The process of converting the source code representation of your embedded
software into an executable binary image involves three distinct steps:

1. Each of the source files must be compiled or assembled into an object
file.

2. All of the object files that result from the first step must be linked

together to produce a single object file, called the relocatable program.
3. Physical memory addresses must be assigned to the relative offsets

within the relocatable program in a process called relocation.
The result of the final step is a file containing an executable binary image that
is ready to run on the embedded system.

The embedded software development process just described is illustrated
in Figure 4-1. In this figure, the three steps are shown from top to bottom,
with the tools that perform the steps shown in boxes that have rounded

corners. Each of these development tools takes one or more files as input and
produces a single output file. More specific information about these tools and

the files they produce is provided in the sections that follow.

Figure 4-1. The embedded software development process
Each of the steps of the embedded software build process is a transformation
performed by software running on a general-purpose computer. To distinguish

this development computer (usually a PC or Unix workstation) from the target
embedded system, it is referred to as the host computer. The compiler,

assembler, linker, and locator run on a host computer rather than on the
embedded system itself. Yet, these tools combine their efforts to produce an
executable binary image that will execute properly only on the target

embedded system. This split of responsibilities is shown in Figure 4-2.

https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html#ID-43104_FigureLabel_Figure_4-2

20

Figure 4-2. The split between host and target

In this book, we’ll be using the GNU tools (compiler, assembler, linker, and
debugger) for our examples. These tools are extremely popular with embedded
software developers because they are freely available (even the source code is

free) and support many of the most popular embedded processors. We will use
features of these specific tools as illustrations for the general concepts

discussed. Once understood, these same basic concepts can be applied to any
equivalent development tool.

Compiling
The job of a compiler is mainly to translate programs written in some human-

readable language into an equivalent set of opcodes for a particular processor.
In that sense, an assembler is also a compiler (you might call it an “assembly
language compiler”), but one that performs a much simpler one-to-one

translation from one line of human-readable mnemonics to the equivalent
opcode. Everything in this section applies equally to compilers and

assemblers. Together these tools make up the first step of the embedded
software build process.
Of course, each processor has its own unique machine language, so you need

to choose a compiler that produces programs for your specific target
processor. In the embedded systems case, this compiler almost always runs

on the host computer. It simply doesn’t make sense to execute the compiler on
the embedded system itself. A compiler such as this—that runs on one
computer platform and produces code for another—is called a cross-compiler.
The use of a cross-compiler is one of the defining features of embedded
software development.

 Q:4) Explain PROM programmer.

Ans:-

PROM programmers, so called because they were initially designed to program

PROMs, EPROMs and EEPROMs, are synonymous with EPROM programmers,

chip programmers, IC programmers, memory programmers, flash programmers

and IC device programmers. They are also referred to as universal device

programmers because they can program a host of different types of chips or ICs

21

without the need for additional "personality cards" (which were used in older

"non-universal" programmers.)

Bipolar PROMs

This universal device programmer supports a wide range of PROMs, which are

the oldest version of programmable read-only memory (PROM) and uses

technology called "bipolar". Because of its old technology, bipolar PROMs require

a variety of high voltages for programming and therefore PROMs are not

supportable by lower cost programmers. Bipolar PROMs are programmable only

once and cannot be erased.

CMOS PROMs

After bipolar, the next major technology that emerged was CMOS

(Complementary metal oxide silicon). CMOS allows the design of UV-erasable

cells which gave rise to erasable PROMs or EPROMs. Memories chips that are

based on the EPROM cells can be erased and reprogrammed numerous times --

provided that the IC chips have a glass (actually quartz) windows to allow UV

lights to go through. Those do not have glass windows cannot be erased and

therefore are called one-time-programmable, or OTP, EPROMs.

While all EPROMs are byte-wide (8-bit) or word-wide (16-bit), most PROMs are

only 4-bit or 8-bit wide.

Since PROMs are very old memory devices, it is not always possible to find them

these days. Therefore it helps to know which ones are compatible, in case the

original part number you need is not available.

For the same reason, it is also important to buy a programmer that supports a

wide variety of bipolar PROMs.

Q:5 Describe the function of embedded software development tools with

their applications

Ans:- Embedded Software is the software that controls an embedded system. All

embedded systems need some software for their functioning. Embedded

software or program is loaded in the microcontroller which then takes care of all

the operations that are running. For developing this software, a number of

different tools are needed which I will discuss further. These tools include

editor, compiler, assembler and debugger. Let’s have a look on them.

• Editor: The first tool you need for Embedded Systems Software Development

Tools is text editor.

• This is where you write the code for your embedded system.

• The code is written in some programming language. Most commonly used

language is C or C++.

22

• The code written in editor is also referred to source code.

Compiler:-

The second among Embedded Systems Software Development Tools is a

compiler.

• A compiler is used when you are done with the editing part and made a

source code.

• The function of compiler is to convert the source code in to object code.

• Object code is understandable by computer as it in low level programming

language.

• So we can say that a compiler is used to convert a high level language

code in to low level programming language.

• Assembler:- The third and an important one among Embedded Systems

Software Development Tools is an assembler.

• The function of an assembler is to convert a code written in assembly

language into machine language.

• All the mnemonics and data is converted in to op codes and bits by an

assembler.

• We all know that our computer understands binary and it works on 0 or 1,

so it is important to convert the code into machine language.

• That was the basic function of an assembler, now I am going to tell you

about a debugger.

Debugger:- As the name suggests, a debugger is a tool used to debug your code.

It is important to test whether the code you have written is free from errors or

not. So, a debugger is used for this testing.

Debugger goes through the whole code and tests it for errors and bugs.

It tests your code for different types of errors for example a run time error or a

syntax error and notifies you wherever it occurs.

The line number or location of error is shown by debugger so you can go ahead

and rectify it.

So from the function, you can see how important tool a debugger is in the list of

Embedded Systems Software Development Tools.

Embedded Systems Software Development Tools, embedded software

tools,embedded system tools, embedded software, embedded system software

5. Linker

23

The next one in basic Embedded Systems Software Development Tools is a

linker.

A linker is a computer program that combines one or more object code files and

library files together in to executable program.

It is very common practice to write larger programs in to small parts and

modules to make job easy and to use libraries in your program.

All these parts must be combined into a single file for execution, so this function

requires a linker.

Now let’s talk about libraries.

6. Libraries

A library is a pre written program that is ready to use and provides specific

functionality.

For Embedded Systems Software Development Tools, libraries are very

important and convenient.

Library is a file written in C or C++ and can be used by different programs and

users.

For example, arduino microcontroller comes with a number of different libraries

that you can download and use while developing your software.

For instance, controlling LED or reading sensor like an encoder can be done

with a library.

The last one on my list is a simulator.

7. Simulator

Among all embedded software tools, simulating software is also needed.

A simulator helps you to see how your code will work in real time.

You can see how sensors are interacting, you can change the input values from

sensors, and you can see how the components are working and how changing

certain values can change parameters.

These were the basic software tools required for embedded software

development.

When I am talking about embedded software tools, it is also important to give

you an idea about IDE which is the next section of my article.

Integrated Development Environment (IDE) – Embedded Systems Software

Development Tools

An Integrated Development Environment is software that contains all the

necessary tools required for embedded software development.

For creating software for you embedded system, you need all of the above

mentioned tools.

So it is very helpful to have software that can provide all of the necessary tools

from writing to testing of your code, in one package.

An IDE normally consists of a code editor, compiler and a debugger.

24

An Integrated Development Environment also provides a user interface.

An example of integrated development environment is Microsoft visual studio. It

is used for developing computer programs and supports different programming

languages.

Q:6) What are the different design goals? Explain the need of Co-design.

Ans:- Design Constraints

Designer of an Embedded System faces two conflicting requirements 1 ; High

Performance and LowCost 2 .

Performance of a system refers to its Direct features. There could be Direct or

Indirect features in a product (both add to product cost). Let us consider

example of a Digital Still Camera. Its direct features include Zoom (how many

X), Picture Quality (How many mega pixels), Optics (which lenses in particular),

Storage (How much memory), Speed (How many clicks per second), and Battery

life. The indirect features include free accessories and spares, image

compression and image processing softwares, warranty and after-sales support.

In this section we will only discuss the direct features of a product because

these features are directly under control of system designer. A careful selection

and design of these features, can greatly improve the final system cost.

High Reliability and High Quality are two other factors which could be decisive

during the Design Process. Some (Mission critical and Life critical) systems

require very high reliability (e.g. Space Shuttles, Heart Pace-maker, ABS in a

Car). Though cost could still be a constraint for such systems, but it is very

much relaxed. Any failure of such product could be fatal and hence the design

process requires special emphasis on reliability. In some products, quality is a

major criteria (apart from low cost).

Safety Norms (e.g. low emi-emc radiations for medical equipments), and Low

Power Design (for battery powered handheld devices) could also act as design

constraints for such systems.

Design Flexibility

Flexibility is an important design goal in most embedded systems. Under fast

growing technological environment, many features of a product get outdated

very fast. New features keep emerging and they soon become desirable in a

product. A flexible system can adapt to these changes with very less effort (with

minimum re-design) and in least time. Product flexibility is a desired

characteristics in order to stay competitive (it helps to mantain low cost and low

delivery times for product upgrade, because minimum redesign is needed).

25

Component selection

The most challenging task for a system designer is that of component selection.

Designers need a variety of components (Processors, Memories, Active and

Passive electrical components, Software Development Tools, and a few ready to

use Software Modules) to build their systems. Overwhelming choices available in

the market, make it very puzzling for the designer to choose a particular

component. Designers can measure the suitability of a given component on

following criteria:

* Feature Identification: Identify the “must features” and “optional features” of

your system (to be designed). Any component which you choose should be able

to meet the “must features” of your system. Any component which can meet the

“optional features” with no additional cost (or minimum cost) should be given

priority.

* Component Life Time: How long does the vendor of a chosen plan to continue

the sale of this component? If vendor stops the production of this component,

when you are still manufacturing your product, then you will have to probably

replace this component. Finding a similar component in future may not be easy.

The replacement could even involve a re-design which will add to a major cost.

Make sure that the assured life time of the component matches with your

product plans.

Layered Architecture

Embedded Systems contain software modules which are closely knit with the

hardware. It is desired that the software modules are partitioned in to multiple

layers. Each layer should be only dependent on the layers immediately above

and below the given layer. It should be agnostic to the changes made to any

other layer in the system.

For example consider a software module which receives video data in X format,

converts it to Y format, and displays it on a LCD panel. In absence of a layered

architecture, any single change made to the specification (data format X or Y, or

LCD panel) will require a change to the complete software module. Changing a

big software module is prone to errors and is difficult to debug. However the

given software module can be partitioned in to following modules/layers:

* Video Format converter (converts data from format X to format Y)

* Low level LCD driver

* Main Application

* APIs (Application Programmer Interfaces) for the LCD driver and Video Format

Converter

Operating Systems

Most embedded Systems either run without a distinct operating system or

employ a very thin operating system. It is mainly because of two reason:

26

* Most embedded systems run small and simple application which are very easy

to manage by user (hence no OS is needed).

* In most designs, the hardware underneath the embedded systems is utilized to

optimum level and there is very less (or no) additional bandwidth (of Hardware

resources) available. Though, an OS can help in managing the system in easier

way, but OS requires a good processor bandwidth for its own functioning (which

is rarely available). Hence most embedded systems to run a stripped-down

version of OS.

Q:7) Explain in detail the importance of embedded software development

process.

Ans:-

