

Mohgaon, Wardha Road, Nagpur - 441 108

DEPARTMENT OF COPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

Structure & Curriculum

From

Academic Year 2023-24

Vision of Institute

To emerge as a learning Center of Excellence in the National Ethos in domains of Science, Technology and Management.

Mission of Institute

- To strive for rearing standard and stature of the students by practicing high standards of professional ethics, transparency and accountability.
- To provide facilities and services to meet the challenges of Industry and Society.
- > To facilitate socially responsive research, innovation and entrepreneurship.
- To ascertain holistic development of the students and staff members by inculcating knowledge and profession as work practices.

Vision of the Department

To achieve excellent standards of quality-education by creating Data Science Engineers who are empowered with latest tools and technologies to provide customer oriented innovations to industry towards serving the greater cause of society.

Mission of the Department

- > To develop professionals who are skilled in the area of Data Science
- To undertake industry academic collaboration to enhance competency in graduates.
- > To foster innovative ideas amongst students for becoming leaders.
- > To create an environment of research culture.
- To impart social and ethical values for inculcating the culture of lifelong learning.

Program Education Objectives (PEO)

- Acquire fundamental knowledge of mathematics, science and engineering to analyze, design and implement solutions to the Data Science problems
- > Understand emerging concepts and trends in Data Science.
- > Apply Data Science tools to develop innovative computational systems.
- The students are encouraged to develop the habit of lifelong learning to face the challenges.
- The students will be embedded as a responsible individual having ethical and social values to lead the society and to nurture team spirit.

Program Outcomes (PO)

- **1. Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and software tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Lifelong learning:** Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

- **PSO-1:** Visualize, curate, and prepare data for use with a variety of statistical/AI methods and models and recognize how the quality of the data and the means of data collection may affect conclusions.
- **PSO-2:** Ability to use modern software packages and scalable computing infrastructure to formulate problems, identify and gather relevant existing data, and analyze the data to provide insights
- **PSO-3:** Utilize contemporary computing technologies, such as machine learning, AI, parallel and distributed computing, to solve practical problems characterized by large-scale data

Tulsiramji Gaikwad-Patil College of Engineering & Technology, Nagpur

SCHEME OF INSTRUCTION & SYLLABI

Programme: CSE - Data Science

Scheme of Instructions: Second Year B. Tech. in CSE - Data Science

Sr.	Course	Course	C				Contact	Course	(International)	EXAM SCI			ME
No.	Category	Code	Course Title	L	Т	P	Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	BSC	BDS2401	Mathematics in Data Science	3		-	3	3	15	15	10	60	100
2	PCC	BDS2402	Computer Networks	3			3	3	15	15	10	60	100
3	PCC	BDS2403	Formal Languages and Automata	3			3	3	15	15	10	60	100
4	PCC	BDS2404	Database Management Systems	3	-		3	3	15	15	10	60	100
5	PCC	BDS2405	Operating System Concepts	3			3	3	15	15	10	60	100
6	PCC	BDS2406	Artificial Intelligence	3			3	3	15	15	10	60	100
7	PCC	BDS2407	Artificial Intelligence Lab	-	-	2	2	1	15		25	25	50
8	PCC	BDS2408	Database Management Systems Lab			2	2	1	-	-	25	25	50
9	PCC	BDS2409	Micro Project	•		2	2	1	-		25	25	50
10	MCC	BAU2404	Group Reading of Classics	2	-	-	2	Audit					
Total		20	00	06	26	21	90	90	135	435	750		

L- Lecture T-Tutorial P-Practical CT1- Class Test 1 CT2- Class Test 2 TA/CA- Teacher Assessment/Continuous Assessment ESE- End Semester Examination (For Laboratory End Semester performance)

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core courses)	PEC (Programme Elective courses)	OEC (Open Elective courses from other discipline)	Project / Seminar / Industrial Training	MCC (Mandatory Courses)
Credits	-	04	-	17	**			
Cumulative Sum	9	25	14	34			-	
PROGRESSIVE TOTAL CREDITS :58+21 Head H.O.Dpartment Data Science Tulsiramji Gaikwad Patil College Of Engineering & Technology, Nagpur and Technology, Nagpur					Vice Pri Vice Pri Tulsiramji College Of Er Technology	ikwad-Patil Igineering & Vaqpur	Princ Prin Tulsiramji Gaikw Engineering and T	ipal Cipar ad Patil College O lechnology, Nagpu

Semester		ter	Course Code	Name	of Course			
IV			BDS2401	Mathematics	in Data Science			
Tea	ching So	chem	e		Examination	Scheme		
Lectures			3 Hr / Week		CT-1	15 Marks		
Tutorial			1 Hr / Week		CT-2	15 Marks		
Theory Cr		dits	4		ТА	10 Marks		
					ESE	60 Marks		
					Total	100 Marks		
					Duration of :	3 Hrs 00 Min.		
Pre	Pre-Requisites: Mathematics – I, Mathematics – II, Mathematics – III							
Cou	ırse Obj	ective	es:					
1	Unders	stand a	and apply basic	c principles of Statistics and Pro	bability in a data	a science context		
2	Recogn	nize tl	he importance	and application of Sampling, Es	timation theory	in data science.		
3	3 To Employ mathematical reasoning and problem-solving skills in a data-driven environment.							
				Course Contents				
		Statis	stics: Mean, 1	Median, Mode, Mean deviation	on, Standard de	eviation, Multiple		
		regression analysis, Regression equation of three variables, Residual MSE and MAE,						
U	nit I	Coefficient of determination, Root Mean Square error, Quartile & Percentile,						
		Interquartile Range, Descriptive Statistics, Statistical quality control, Analytic tools						
		Sam	oling Theory:	ing Theory: Population and sample Statistical inference Sampling with and				
Ur	nit II	without replacement, Population parameters, sample statistics. Sampling distribution						
		of means, and Sampling distribution of proportions.						
		Estimation Theory: Unbiased and efficient estimates, Point estimates and interval						
Un	it III	estimates, Confidence interval for means, Confidence interval for proportions,						
		Confidence interval for differences and sums of mean and proportions.						
Un	:+ TX 7	Hypothesis testing: Introduction, significant level and p-value, Type-I and Type-II						
UI	11 1 V	errors, confidence interval, Margin of error, hypothesis test, t-Test, Z-test, proportion						
		Gran	h Theory Ba	sic concepts of graph theory D	igraphs Basic o	lefinitions Matrix		
		repres	sentation of gr	raphs. Sub graphs and quotient	graphs. Isomori	ohic graphs. Paths		
TT-		and c	ircuits, Reach	ability and connectedness, Nod	e base, Euler's p	bath & Hamilton's		
UI	nt v	path,	Tree, Binary	tree, Undirected tree, Spannin	ng tree, Weigh	ted graphs (Only		
		defini	itions and exami	mples), Minimal spanning tree	by Prim's algor	rithm & Kruskal's		
		algor	ithm, Represen	tation of algebraic expressions b	y Venn diagran	n and binary tree.		
Tex	t Books							
T.1	T.1 Essential Math for Data Science, 1 st edition by Thomas Nield, 2022							

T.2	Probability, Statistics and Random Processes by T. Veerarajan, 3 rd edition 2008.					
тз	Fundamentals of Mathematical Statistics (Modern Approach) S.C. Gupta and V. K. Kapoor					
1.5	10th Edition, 2001					
Refer	Reference Books					
R .1	A Text Book of Engineering Mathematics N. P. Bali & M. Goyal Laxmi Publication					
R 2	Probability, Statistics with Reliability, Queuing and Computer Science Application K.S.					
R. 2	Trivedi.					
R.3	Higher Engineering Mathematics by B.S. Grewal, 40th Edition Khanna Publication					
R.4	Advanced Engineering Mathematics Erwin Kreysizig 8th Edition, Wiley India					
Usefu	ll Links					
1	https://nptel.ac.in/courses/106/106/106106183/					
2	https://nptel.ac.in/courses/111/107/111107058/					

Course Outco	Course Outcomes				
After the comp	bletion of this course, students will be able to-		Session		
DDC3401 1	Apply Statistical concepts to real world situation and problem		9		
BD52401.1	solving.				
DDC2401.2	Apply the most appropriate Sampling Techniques for a given	3	9		
BD52401.2	applied problems.				
BDS2401.3	Analyze and interpret results from point and interval estimates.	4	9		
BDS2401.4	Apply hypothesis testing to real-world scenarios.	3	9		
BDS2401 5	Analyze computational problems in graph theoretical	4	9		
DD62401.5	framework.				

(HOD (CSE-Data Science) Hoad of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering & Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Semest	ter	Course Code	Name	of Course
IV		BDS2402	Computer Networks	
Teaching Scheme			Examination	Scheme
Lectures	3 Hr / Week		CT-1	15 Marks
Tutorial	1 Hr / Week		СТ-2	15 Marks
Theory Credits	3		ТА	10 Marks
			ESE	60 Marks
			Total	100 Marks
			Duration of : 3 Hrs 00 Min.	

Cou	Course Objectives:					
1	To u	nderstand the computer network architectures.				
2	Stud	Study of different protocols at various layers.				
3	Und	erstand TCP/IP and ISO OSI network layer.				
4	Stud	y of design and performance perspective of network architectures.				
5	Intro	duction to the major concepts involved in network protocols.				
		Course Contents				
Un	Introduction: Uses and applications of computer networks, Connectionless oriented Unit I and connectionless services, Wired and Wireless Network, Network types- LAN,MANMANWANNetworkDevices					
Unit II		Network Topology: Network topology, Types of Network Topology. Layered Architecture: TCP/IP Model, OSI Model, Difference between TCP/IP and OSI.				
Uni	t III	Wired Transmission Media: Guided and Unguided Media, characteristics of Transmission Media, Twisted-pair, Coaxial cable, Optical fiber. Wireless LANs: IEEE 802.11, Bluetooth.				
Uni	t IV	Network Layer: Switching: circuit, packet and message switching. Internet Protocol (IP) – Logical Addressing: IPV4, IPV6. Transport Layer: Elements of Transport protocols: Addressing, Connection establishment, Connection release, Crash recovery, User Datagram Protocol (UDP), Transmission Control Protocol (TCP).				
Un	it V	Application Layer: WWW, HTTP, DNS, SMTP, FTP, TFTP, TELNET				
Text	Text Books					
T.1	Con educ	nputer networks / A.S., Wetherall D.J.Tanenbaum; 5th edition. ; new delhi , pearson ation, 2014				
T.2	Data Hill	Communications and Networks: 4th edition by Behrouz A. Forouzan. Tata McGraw publication.,2007				
T.3	William Stallings, "Data and Computer Communications", PHI 6th Edition, 2014					

R .1	Top down approach to computer networks by Kurose and Ross				
R.2	Simon Haykin, "Communication Systems", John Wiley 4th Edititon				
R.3	Peterson, Simon, "Computer Networks: A Systems Approach", Pearson Education, Asia				
R.4	Douglas Comer, "Computer Networks and Internets", Addison Wesley 2nd Edition				
Usef	Useful Links				
1	https://byjus.com/govt-exams/computer-networks/				
2	https://www.pearsonitcertification.com/articles/article.aspx?p=1804869				

Course Outco	Course Outcomes					
After the comp	After the completion of this course, students will be able to-					
BDS2402.1	Apply Fundamentals of network formation and network devices in physical layer.	3	9			
BDS2402.2	Analyze reliable network topology by comparing types and Layered architecture in network layer.	4	9			
BDS2402.3	Determine differentiation between wired and wireless Transmission Media	4	9			
BDS2402.4	Apply access control protocol for communication in network and reliable transmission of data packets in transport layer.	3	9			
BDS2402.5	Examine effective communication in network by application layer.	3	9			

(HOD (CSE-Data Science) Head of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Aca demics

Dean Academics Fulsiramji Gaikwad-Patii College Of Engineering and Technology, Nagpur

An Autonomous Institute affiliated to RTMNU Nagpur

Semester		ster	Course Code	Name	of Course			
			BDS2403	Formal Lang	uage Automata			
Teach	ning Scheme			Examination Scheme				
Lectu	res	3 Hr / Week		CT-1 15 Marks				
Tutor	ial	1 Hr / Week		CT-2 15 Marks				
Theor	ry Credits	3		ТА	10 Marks			
				ESE	60 Marks			
				Total	100 Marks			
				Duration of :	3 Hrs 00 Min.			
Cours	se Objective	s:						
1	To provide	students an under	standing of basic concepts ir	the theory of c	omputation.			
2	To analyze	formal languages	and various models of comp	outation.				
3	To exhibit f	undamental conc	epts related with computability	ity theory.				
			Course Contents					
	Introdu	ction-Basic Math	iematical Notation and tech	niques-Finite Si	tate systems-Basic			
Unit	$I \mid \frac{\text{Dennu}}{\text{Peqular}}$	Definitions-Finite Automaton-DFA & NDFA-Finite Automaton with ϵ - moves-						
	of NDF	of NDFA's with and without \notin -moves-Equivalence of finite Automaton						
	Regula	Regular Expressions, Finite Automata and Regular Expressions, Applications of						
	Regula	Regular Expressions, Algebraic Laws for Regular Expressions, Properties of Regular						
Unit	II Langua	Languages Pumping Lemma for Regular Languages, Applications of the Pumping						
	Lemma	Lemma, Closure Properties of Regular Languages, Decision Properties of Regular						
	Langua	Languages						
	Gramm	ers Derivations	Using a Grammar Leftmos	uages. Definition	on of Context-Free			
	Langua	Language of a Grammar Sentential Forms Parse Tress Applications of Context-Free						
Unit	III Gramm	Grammars. Ambiguity in Grammars and Languages. Push Down Automata.:						
	Definit	Definition of the Pushdown Automaton, Acceptance of CFL, Acceptance by Final State						
	and Acc	and Acceptance by Empty stack, the Languages of a PDA, Equivalence of PDA's and						
	CFG's,	Deterministic Pu	shdown Automata.					
	Definit	ions of Turing ma	chines: behavior, Languages of	of a TM, TM as a	ccepters, and TM as			
Unit	IV function	uter of integer fi	inctions, Types of TMs, Mo	odels-Computab	d and Multi targe			
Umu	IV IUNCIIO	Machines The	or Turing machine construct Halting problem Partial So	luon-Multi nea	a and Multi tape			
	machin	e.	fraining problem-rartial So	orvaonity-1100ie	ins about Turing			
	RECU	RSIVE AND REC	URSIVELY ENUMERABL	E LANGUAGES	S (REL): Properties			
Unit	v of recur	sive and recursive	ly enumerable languages, Un	-decidability: A	Language that is			
Unit	Not Re	cursively Enume	rable, An Undecidable Pro	blem Undecida	ble problems about			
	TMs. C	ontext sensitive la	nguage and linear bounded au	utomata (LBA), (Chomsky hierarchy,			

	Decidability, Post's correspondence problem (PCP), undecidability of PCP., Other					
	Undecidable Problems, and Intractable Problems: The Classes P and NP, An NP-					
	Complete Problem.					
Text Books						
т 1	Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E.					
1.1	Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education. 1960					
тэ	Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning,					
1.2	2009					
Refe	rence Books					
R .1	Introduction to Languages and The Theory of Computation, John C Martin, TMH.					
R.2	Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.					
R.3	A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press					
Usef	ul Links					
1	https://ocw.mit.edu/courses/18-404j-theory-of-computation-fall- 2020/video_galleries/video-					
	<u>lectures/</u>					
2	https://archive.nptel.ac.in/courses/106/104/106104028/					

	Course Outcomes	CI	Class			
After the comp	bletion of this course, students will be able to-	CL	Session			
BDS2403.1	Apply basic properties of formal languages to construct Finite Automata.	3	9			
BDS2403.1	B.1 Design Finite Automata for different Regular Expressions and Languages.					
BDS2403.1	2403.1 Compare different types of grammar and test the equivalence of pushdown and CFL.					
BDS2403.1	Create a computational model using Turing Machine for the given problem.	6	9			
BDS2403.1	Demonstrate basic concept of undeciadibility, post correspondence & Recursive enumerable Language.	3	9			

(HOD (CSE-Data Science) Hoad of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

An Autonomous Institute affiliated to RTMNU Nagpur

Semester		Course Code	Name of Course			
IV		BDS2404	Database	Management System		
Teaching Scheme			Examinat	ion Scheme		
Lectures	3 Hr / Week		CT-1 15 Marks			
Tutorial	1 Hr / Week		CT-2	15 Marks		
Theory Credits3			ТА	10 Marks		
			ESE	60 Marks		
			Total	100 Marks		
			Duration	of : 3 Hrs 00 Min.		
Course Objectives:	2					

- 1. It is aimed at developing skills to design database using data modeling and design techniques.
- 2. It is also aimed to developing skills to implement real life applications which involve database handling.
- 3. This course also provides carrier opportunities in subject areas of designing, storage techniques and data handling and managing techniques.

Course Contents

- Introduction to Management Systems: Significance and advantages, Types of Databases, DBMS Architecture, Functions of DBMS.
- **Unit I Relational Model:** Entity Relationship Model, Development of ER Diagrams, Extended Entity Relationship Model. Relational model, Database Schema, Relational query languages, Relational algebra, Tuple and Domain Calculus.

Relational Database Design: Dependency theory- functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's minimal covers.

Unit II Normalization of Database Tables: 1NF, 2NF, 3NF, BCNF, Non-loss Decomposition & Dependency preservation, Multi-valued dependencies and 4NF, Join dependencies and definition of 5NF.

Query Processing & Optimization: Query processing, Evaluation of relational
algebra expressions, Algorithms for SELECT and JOIN operations, Query
optimization using Heuristics and Cost Estimation, Materialized Views**Unit III**Storage Structure & strategies : RAID Indexing and Hashing Ordered Indices

 Storage Structure & strategies : RAID, Indexing and Hashing –Ordered Indices –

 B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing

 Transaction

Transaction Management: Transaction concepts, properties of transactions,
serializability of transactions, Two- Phase Commit protocol, Deadlock, two-phase
locking protocol**Unit IV**

Database Recovery : Failures and their classification, recovery and atomicity, recovery algorithms

Un	it V	NoSQL Database: Concepts and evolution, Characteristics and significance, Key-			
UI	IL V	value database, Graph Databases, Document Databases, CRUD Operation.			
Text	Books	S			
T ₁ Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database Sys		ham Silberschatz, Henry F. Korth and S. Sudarshan, Database System Concepts, 6th			
1.1	Editi	on, McGraw Hill (SIE), 2013.			
т 2	Carlo	os Coronel, Steven Morris and Peter Rob, Database Principles-Fundamentals of Design,			
1.2	Impl	ementation and Management, 9th Edition, Cengage Learning, 2013.			
т 3	Big	Data: Principles and Paradigms Amir Vahid Dastjerdi, Rajkumar Buyya, Rodrigo N.			
1.5	Calh	eiros, Elsevier Science2007			
T.4	NoSQL for Mere Mortals. Dan Sullivan, Addison-Wesley Professional, 2018				
Refe	rence	Books			
R .1	Alex	xis Leon and Mathews Leon, Database Management Systems, Vikas Publishing, 2008.			
R.2	Next	t-Generation Databases, Guy Harrison, Apress			
R.3	An I	ntroduction to Database Systems(8e Pearson) by Date, Kannan, Swamynathan			
Usef	ul Lin	ks			
1	https:	//nptel.ac.in/courses/106/105/106105175/			
2	https:	//onlinecourses.nptel.ac.in/noc21_cs04/preview			
3	https:	//nptel.ac.in/noc/courses/noc18/SEM1/noc18-cs15/			

Course Outcomes			Class
After the completion of this course, students will be able to-			Session
BDS2404.1 Analyze data storage problem and derive a data model expressed in the form of an entity relationship or relational model.			9
BDS2404.2 Implement relational database design and normalization method of database table.			9
BDS2404.3 Evaluate query processing techniques and its strategy			9
BDS2404.4 Apply the concepts of transaction management, scheduling, recovery while working in database environment.			9
BDS2404.5	Illustrate the issues and concepts of NoSQL databases.	3	9

(HOD (CSE-Data Science) Head of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patii College Of Engineering and Technology, Nagpur

An Autonomous Institute affiliated to RTMNU Nagpur

Semester		Course Code	Name of Course		
IV		BDS2405	Operating System Concepts		
Teaching Scheme			Examinat	ion Scheme	
Lectures	3 Hr / Week		CT-1	15 Marks	
Tutorial	1 Hr / Week		CT-2	15 Marks	
Theory Credits3			ТА	10 Marks	
			ESE	60 Marks	
			Total	100 Marks	
			Duration	of : 3 Hrs 00 Min.	
Course Objectives					

Course Objectives:

- 1. Introduce general Idea, Structure and Functions of Operating System.
- 2. Making Students aware of basic mechanisms used to handle processes, memory, storage devices and files.

	Course Contents
Unit I	Introduction: What is Operating System(OS), structure of OS, history of OS, Types of OS: Time sharing, real-time, multi-process (Asynchronous & Synchronous), multiprogramming (loosely coupled, tightly coupled), Distributed, web-based, client-server, peer-to-peer, services of OS, user view & machine view of OS, System calls, Spooling and buffering. Case Studies: Android, Linux, Windows 8.
Unit II	File Management: File Concept, file attributes, file operations, file system structure, file system implementation, file access methods, Disk Scheduling Algorithms, File protection, free space management on disk. Process Management: Process concept, process scheduling, operations on process, interprocess communication, communication between client-server, multithreaded model, process scheduling criteria, scheduling algorithm.
Unit III	Memory Management : Preliminaries, Bare machine, resident monitor, swapping, multiple partitions, paging, segmentations, combined systems. Virtual Memory: Overlays, demand-paging performance, of demand paging, page replacement, virtual memory concepts, page replacement algorithms. Allocation algorithm, thrashing.
Unit IV	Process Synchronization : Critical Section problem, semaphores, classic problems: Dining Philosopher problem, producer-consumer, reader-writers problem, bounded buffer problem, monitors, Atomic transaction, synchronization examples.
Unit V	Deadlock and Protection: System model, deadlock characterization, methods for handling deadlocks, prevention, detection, recovery, avoidance, Banker's Algorithm. Goal of protection, mechanism & policies, domain protection, access matrix, implementation of access matrix, dynamic protection structures, revocation, existing systems & language based protection, protection problem security.

T.1	Operating System Principles, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Wiley India Pvt. Limited, 8yh edition 2009			
T.2	Modern Operating Systems – A. S. Tanenbaum, Pearson Education, 4 th Edition 2015			
T.3	Operating System- A. S. Godbole, Tata McGraw Hill, third edition, 2005			
T.4	Android application Development for Java Programmers by James c. Sheusi, CENGAGE Learning. 1 st Edition 2013			
Refe	rence Books			
R .1	Operating Systems concepts and Design – Milan Milenkovic, Tata McGraw Hill			
Usef	ul Links			
1	https://nptel.ac.in/courses/106/105/106105214/			
2	https://nptel.ac.in/courses/106/106/106106144/			
3	https://nptel.ac.in/courses/106/102/106102132/			

Course Outcomes			Class	
After the completion of this course, students will be able to-			Session	
BDS2405.1 Analyze the structure of OS and basic architectural components involved in OS design.			9	
BDS2405.2	DS2405.2 Apply the concept of file system management with the concept of interprocess communication.			
BDS2405.3 Analyze the role of paging, segmentation and virtual memory in operating systems.			9	
BDS2405.4 Evaluate Critical section problems using process synchronization.			9	
BDS2405.5	Analyze the mutual exclusion, Deadlock detection and protection problem security of operating system.	4	9	

HOD (CSE-Data Science)

Hoad of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patii College Of Engineering and Technology, Nagpur

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441108

NAAC Accredited (A+ Grade)

An Autonomous Institute affiliated to RTMNU Nagpur

Semester		Course Code	Name of Course		
IV		BDS2406	Artificial Intelligence		
Teaching Scheme			Examination Sch	eme	
Lectures	3 Hr / Week		CT-1 15 Marks		
Tutorial 1 Hr / Week			CT-2	15 Marks	
Theory Credits3			ТА	10 Marks	
			ESE	60 Marks	
			Total	100 Marks	
			Duration of : 3 H	Irs 00 Min.	
Course Objectives:					

- 1 To understand the idea of Artificial Intelligence and challenges involved in designing AI
- 2 To understand various knowledge representation.
- 3 To develop skills required for ES and life cycle of ES
- 4 To represent given problem using state space representation and solve it by using different search techniques.
- 5 To understand uncertainty theory in designing AI system.

Course Contents Unit I Introduction: AI, History, applications, AI problems and AI Techniques, Basics of problem solving, problem representation for toy problems and real world problems, Production system, Structure of agent, rational agent. Uninformed Search Techniques: Depth-first search, Breadth-first search,

- Unit IIcomparison of both.Informed Search Techniques: Generate and test, Best First Search, Hill-climbing,
Simulated Annealing, and Genetic Algorithms.
- Unit IIIAdversarial Search: Two player Games, The min-max algorithm, Alpha-Beta
pruning. Constraint Satisfaction Problems: Constraint propagation, backtracking
search
- Unit IVFirst Order Logic: Models for first order logic, Syntax and Semantics of FOL,
Terms, Atomic sentences, complex sentences, Inference in FOL, Unification and
lifting, Forward Chaining, Backward Chaining, and Resolution.
- Unit VUncertainty Knowledge and Reasoning : rational decisions, basics of probability,
axioms of probability, Probability and Baye's Theorem, Bayesian networks
Expert system: Development and life cycle of ES, Advantages, characteristics of
conventional system and expert system.

Text]	Books
T.1	E. Rich, K. Knight, S. B. Nair; Artificial Intelligence; 3rd Edition; Tata McGraw Hill, 2014.
T.2	Stuart Russel and Peter Norvig; Artificial Intelligence: A Modern Approach; Third Edition; Pearson Education, 2009.
Т.3	A First Course in Artificial Intelligence(Mc-Graw Hill) by Deepak Khemani 6 th Edition 2017
Refer	ence Books
R.1	Denis Rothman; Artificial Intelligence By Example: Develop machine intelligence from scratch using real artificial intelligence use cases; Kindle Edition, Packt Publishing Ltd, 2018.
R.2	Artificial Intelligence a Modern Approach : Russel and Norvig , Pearson Education, 2 nd edition
R.3	Artificial Intelligence – A Practical Approach : Patterson , Tata McGraw Hill, 3rd edition
Usefu	l Links
1	https://nptel.ac.in/courses/106102220
2	https://www.uc.edu/content/dam/uc/ce/docs/OLLI/Page%20Content/ARTIFICIAL%20IN TELLIGENCEr.pdf

Course Outcomes			Class	
After the comp	CL	Session		
BDS2406.1 Acquire knowledge of applications of AI, Production system, real world problems			9	
BDS2406.2 Apply informed and uninformed search strategies.			9	
BDS2406.3	S2406.3 Evaluate AI techniques using Adversarial Search			
BDS2406.4	4	9		
BDS2406.5	Apply uncertainty theory based on techniques like probability theory		9	

al

HOD (CSE-Data Science) Head of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patii College Of Engineering and Technology, Nagpur

			Tulsiramji Ga	ikwad-Patil College of Er	gineering and		
.)	Technology						
7			Wa	rdha Road, Nagpur-4411	08		
			NA	AC Accredited (A+ Grad	e)		
	An Autonomous Institute affiliated to RTMNU Nagpur						
	Semester Course Code Name of Course					e	
		IV		BDS2407	Artificial Intellig	enc	e Lab
Teach	ning Schem	e			Examination Sche	me	
Lectu	ires		-		ESE	25	Marks
Tutor	rial		-		СА	25	Marks
Pract	ical		2 Hr / Week		Total	50	Marks
Pract	ical Credit	s	1		Duration of : 2 Hr	s 00	Min.
Cours	se Objectiv	es:					
1	To unders	tanc	the idea of Artific	cial Intelligence and challer	nges involved in desig	gnin	g AI.
2	To underst	tanc	l various knowledg	ge representation.			
3	To develop	p sk	tills required for E	S and life cycle of ES			
4	To represe	ent g	given problem usi	ng state space representation	on and solve it by usi	ng c	lifferent
	search tech	hnic	lues.				
5	To understand uncertainty theory in designing AI system.						
Sr. No.	List of Experiments CO					COs	
1	Write a program that list four addresses in a label form, each address should list a				COL		
1	name, one	- lir	ne address, city, sta	ate & pin-code.			COI
2	Write a pr	ogra	am for diagnosis th	ne childhood diseases.			CO1
3	Write a pr	ogra	am to demonstrate	the effective use of Cut and	d Fail.		CO2
4	Write a pr	ogr	am to find roots of	quadratic equation. (consid	der all possible cases)	ł	CO2
5	Write a pr	ogra	am to find minimu	m & maximum from give I	Numbers.		CO3
6	Write a pr	ogra	am to solve water	– Jug problem.			CO3
7	Write a pr	ogra	am to find factoria	l of given number.			CO4
8	Write a pr	ogr	am to input user na	ame and password from use	er and repeatedly aski	ng	CO4
	if any one	of t	hem is wrong.				001
9	Write a pr	ogra	am to implement T	Tower of Hanoi problem			CO5
10	Write a program for traveling salesman problem.CO5						
Text	Text Books						
T.1	1 E. Rich, K. Knight, S. B. Nair; Artificial Intelligence; 3rd Edition; Tata McGraw Hill, 2014.						
T.2	2 Stuart Russel and Peter Norvig; Artificial Intelligence: A Modern Approach; Third Edition; Pearson Education, 2009.						
T.3	A First Co	ours	e in Artificial Intel	lligence(Mc-Graw Hill) by	Deepak Khemani 6 th l	Editi	ion2017
Refer	ence Books	5					
R.1	Denis Rot	hm	an; Artificial Intell	ligence By Example: Devel	op machine intelliger	ice f	rom

	scratch using real artificial intelligence use cases; Kindle Edition, Packt Publishing Ltd,				
	2018.				
R.2	Artificial Intelligence a Modern Approach : Russel and Norvig, Pearson Education, 2 nd				
	edition				
R.3	Artificial Intelligence – A Practical Approach : Patterson, Tata McGraw Hill, 3rd edition				
Useful Links					
1	https://nptel.ac.in/courses/106102220				
2	https://www.uc.edu/content/dam/uc/ce/docs/OLLI/Page%20Content/ARTIFICIAL%20INT				
	ELLIGENCEr.pdf				

Course Outco	CL	Class		
After the comp		Session		
BDS2407.1	DS2407.1 Acquire knowledge of applications of AI, Production system, real world problems			
BDS2407.2	Apply informed and uninformed search strategies.	3	4	
BDS2407.3	Evaluate AI techniques using Adversarial Search	5	4	
BDS2407.4	Analyze different logics in AI to infer new facts from existing knowledge.	4	4	
BDS2407.5	Apply uncertainty theory based on techniques like probability theory	3	4	

HOD (CSE-Data Science) Head of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

An Autonomous Institute affiliated to RTMNU Nagpur

Semester		Course Code	Name of Course		
IV		BDS2408	Database Management System Lab		
Teaching Scheme			Examination Scheme		
Lectu	ires	-		ESE 25 N	
Tutorial -			СА	25 Marks	
Pract	tical	2 Hr / Week		Total	50 Marks
Pract	tical Credits	1		Duration of : 2 Hrs 00 Min	n.
Cour	se Objectives:				
1.	It is aimed techniques.	at developing	skills to design data	base using data modeling a	and design
2.	It is also ain database hand	ned to develop lling.	ping skills to impleme	nt real life applications whi	ich involve
3.	This course also provides carrier opportunities in subject areas of designing, storage techniques and data handling and managing techniques.				
Sr. No.	List of Experiments (COs
1	Introduction to MySQL.				CO1
2	To study and execute the DDL commands of SQL * CREATE * ALTER * RENAME * DROP				CO1
3	To study and execute the DML commands of SQL: Insert, Select, Update, Delete				
4	Write SQL queries to implement Keys constraints O				CO2
5	Implementation of different types of Aggregate function with suitable examples CO				CO3
6	Implementation of different types of operators in SQL C				CO3
7	To perform q	ueries based or	Group By, Having, Or	der By clause	CO4
8	Study & Impl	ementation of	Subqueries		CO4
9	Study ER diagram. Analyze the Bus Reservation System and come with the entities in it. Identify what Data has to be persisted in the databases.			CO5	
10	Study and implement NoSql CO5				CO5
Text	Books				
T.1	Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System Concepts, 6th Edition, McGraw Hill (SIE), 2013.				
T.2	Carlos Coronel, Steven Morris and Peter Rob, Database Principles-Fundamentals of Design, Implementation and Management, 9th Edition. Cengage Learning, 2013.				
T.3	Big Data: Principles and Paradigms Amir Vahid Dastjerdi, Rajkumar Buyya, Rodrigo N. Calheiros, Elsevier Science2007				
T.4	NoSQL for Mere Mortals. Dan Sullivan, Addison-Wesley Professional, 2018				
Refer	rence Books				
R .1	Alexis Leon and Mathews Leon, Database Management Systems, Vikas Publishing, 2008.				
R.2	Next-Generation Databases, Guy Harrison, A press				

R.3	An Introduction to Database Systems(8e Pearson) by Date, Kannan, Swamynathan		
Useful Links			
1	https://nptel.ac.in/courses/106/105/106105175/		
2	https://onlinecourses.nptel.ac.in/noc21_cs04/preview		
3	https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-cs15/		

Course Outcomes			Class
After the comp	CL	Session	
BDS2408.1	Analyze data storage problem and derive a data model expressed in the form of an entity relationship or relational model.	4	4
BDS2408.2	Implement relational database design and normalization method of database table.	3	4
BDS2408.3	Evaluate query processing techniques and its strategy.	5	4
BDS2408.4	Apply the concepts of transaction management, scheduling, recovery while working in database environment.	3	4
BDS2408.5	Illustrate the issues and concepts of NoSQL databases.	3	4

al

HOD (CSE-Data Science) Head of Department Data Science Tuisiramji Gaikwad Patil College Of Engineering &Technology, Nagpur

Dean Academics

Dean Academics Fulsiramji Gaikwad-Patii College Of Engineering and Technology, Nagpur

An Autonomous Institute affiliated to RTMNU Nagpur

Semester			Course Code	Name of Course		
IV			BDS2409	Micro Project		
Teaching Scheme			Examination Scl	neme		
Lectu	res	-		ESE	25 Marks	
Tutorial		-		СА	25 Marks	
Practical		2 Hr / Week		Total	50 Marks	
Practical Credits 1		1		Duration of : 21	Hrs 00 Min.	
Course Objectives:						
1.	To be able to apply some of the techniques/principles students have been taught.					
2.	To do effective trouble-shooting of the micro project.					
3.	To develop effective communication skill by delivering a seminar based on micro project					

3. To develop effective communication skill by delivering a seminar based on micro project

Course Outcomes			Class
After the com	CL	Session	
BDS2409.1	Demonstrate a through and systematic understanding of project contents.	3	4
BDS2409.2	Apply methodologies and professional way of documentation and communication.	3	4
BDS2409.3	4	4	
BDS2409.4	Elaborate and Implement the idea in micro project for mini project.	5	4
BDS2409.5	Develop Software skills by learning various algorithms and methodology.	6	4

tment HOD (CSE-Data Science)

Tulsiramji Gaikwad Patil College OI Engineering & Technology, Nagpur

Tulsirar ad-Patil College C Engineering & Technology Nagpur.

Dean A ademics Dean Academics Tulsiramji Gaikwad-Pati College Of Engineering and Technology, Nagpur

rincipal

Principal Tulsiramji Gaikwad Patil College Of Engineering and Technology, Nagpu-